1. Zhiravetska, A., Trifonov-Bogdanov, P., & Shestakov, V. (2012). Mechanisms of Error Development in Inertial Navigation Systems, Aviation, 16 (2) 33–37.10.3846/16487788.2012.701872 Search in Google Scholar

2. Britting, K. (2010). Inertial Navigation Systems Analysis. London: Artech House Print. Search in Google Scholar

3. Lawrence, A. (2001). Modern Inertial Technology. Berlin: Springer. Search in Google Scholar

4. Wrigley, W., Hollister, W., & Denhard, W. (1969). Gyroscopic Theory, Design and Instrumentation. Cambridge: M.I.T. Press. Search in Google Scholar

5. Grewal, M.S., Weill, L.R., & Andrews, A.P. (2004). Global Positioning Systems, Inertial Navigation and Integration. NJ: Wiley. Search in Google Scholar

6. Vaisgant, I. (1984). Inertial Navigation Systems Structure Principles. Saint Petersburg: LETI. Search in Google Scholar

7. Matvejev, V. (2012). Inertial Navigation Systems. Tula: TulGu. Search in Google Scholar

8. Moir, I., & Seabridge, A. (2006). Civil Avionics Systems. Wiley-Blackwell.10.2514/4.478338 Search in Google Scholar

9. Trifonovs-Bogdanovs, P., Žiravecka, A., Trifonova-Bogdanova, T., & Mamay, K. (2017). Structural Correction of Inertial System Circuit. Transport and Aerospace Engineering, 4, 46–52. ISSN 2255-968X. e-ISSN 2255-9876.10.1515/tae-2017-0006 Search in Google Scholar

10. Method for Structural Correction of Inertial Navigation System, Republic of Latvia. (2012). Patent – 14487. ISSN 1691-5968. Search in Google Scholar

Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics