Cite

1. Politico. (2017). Decarbonizing Europe’s Transport Sector: On the Road to Low Emission Mobility. Available at http://erticonetwork.com/wp-content/uploads/2017/01/Decarbonizing-Europes-transport-sector-on-the-road-to-low-emission-mobility-Draft-agenda.pdf Search in Google Scholar

2. Fuel Strategies. (2019). Assessing CNG, LNG and Biomethane. Available at http://futurefuelstrategies.com/wp-content/uploads/sites/7/2019/05/MR_FOD_NG_Apr2019.pdf Search in Google Scholar

3. European Commission. (2017). Summary on National Plans for Alternative Fuel Infrastructure. Available at https://ec.europa.eu/transport/sites/transport/files/2017-11-08-mobility-package-two/summary_of_national_policy_frameworks_on_alternative_fuels.pdf Search in Google Scholar

4. Argonne National Laboratory. (2020). GREET® Model. The Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model. Available at https://greet.es.anl.gov/ Search in Google Scholar

5. Wei, L., & Geng, P. (2016). A Review on Natural Gas/Diesel Dual Fuel Combustion, Emissions and Performance. Fuel Processing Technology, 142. doi: 10.1016/j. fuproc.2015.09.018 Search in Google Scholar

6. Curran, S. J., Wagner, R. M., Graves, R.L., Keller, M., & Green, J. (2014). Well-to-Wheel Analysis of Direct and Indirect Use of Natural Gas in Passenger Vehicles. Energy, 75. doi: 10.1016/j.energy.2014.07.03510.1016/j.energy.2014.07.035 Search in Google Scholar

7. Cabinet of Ministers. (2017). Regulation No. 78 as of 7 February 2017 “Regulations Regarding the Trade and Use of Natural Gas”. Available at https://likumi.lv/ta/en/en/id/289031 Search in Google Scholar

8. Khan, M.I., Khan, M.I., Yasmeen, T., Farooq, M., & Rana, R. W. (2016). Research Progress in the Development of Natural Gas as Fuel for Road Vehicles: A Bibliographic Review (1991–2016). Renewable and Sustainable Energy Reviews, 66 (1364–0321). doi: 10.1016/j.rser.2016.08.04110.1016/j.rser.2016.08.041 Search in Google Scholar

9. Janssen, A., Lienin, S. F., Gassmann, F., & Wokaun, A. (2006). Model Aided Policy Development for the Market Penetration of Natural Gas Vehicles in Switzerland. Transportation Research Part A: Policy and Practice, 40 (4). doi: 10.1016/j. tra.2005.06.006Farzaneh-Gord, M., Deymi-Dashtebayaz, M., & Rahbari, H.R. (2011). Studying Effects of Storage Types on Performance of CNG Filling Stations. Journal of Natural Gas Science and Engineering, 3 (1). doi: 10.1016/j.jngse.2011.02.00110.1016/j.jngse.2011.02.001 Search in Google Scholar

10. Kagiri, K., Zhang, L., & Xia, X. (2019). Optimal Dispatch of Grid and Natural Gas Generator Power in a Scheduled Compressed Natural Gas Fuelling Station. Chinese Control Conference (CCC), 2029–2033. doi: 10.23919/ChiCC.2019.886636110.23919/ChiCC.2019.8866361 Search in Google Scholar

11. Kagiri, Ch., Wanjiru, E.M., Zhang, L. & Xia, X. (2018). Optimized Response to Electricity Time-of-Use Tariff of a Compressed Natural Gas Fuelling Station. Applied Energy, 222. doi:10.1016/j. apenergy.2018.04.017 Search in Google Scholar

12. U.S. Department of Energy. (n.d.). Compressed Natural Gas Fuelling Stations. Available at https://afdc.energy.gov/fuels/natural_gas_cng_stations.html Search in Google Scholar

13. Hagos, D.A., & Ahlgren, E. (2018). A State-of-the-Art Review on the Development of CNG/LNG Infrastructure and Natural Gas Vehicles (NGVs). Technical report Future Gas Project – WP3 Gas for Transport WP3 Deliverable 3.1.1. Search in Google Scholar

14. Sharafian, A., Talebian, T., Blomerus, P., Herrera, O., & Mérida, W. (2017). A Review of Liquefied Natural Gas Refuelling Station Designs. Renewable and Sustainable Energy Reviews, 69. Available at http://sharafian.weebly.com/uploads/2/9/2/9/29292149/a_review_of_liquefied_natural_gas_refueling_station_designs.pdf10.1016/j.rser.2016.11.186 Search in Google Scholar

15. Reķis, J., Šmigins, R., Gailis, M., & Klāvs, G. (2018). Pētījums par Eiropas Parlamenta un Padomes 2014. gada 22. oktobra Direktīvas 2014/94/ES par alternatīvo degvielu ieviešanu scenārijiem. Rīga: PricewaterhouseCoopers. Search in Google Scholar

16. European Parliament, & Council. (2014). Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure. Official Journal of the European Union, L307/1. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014L0094 Search in Google Scholar

17. Gaso. (n.d.). Pašvaldības ar izbūvētu dabasgāzes infrastruktūru. Available at https://www.gaso.lv/karte Search in Google Scholar

18. Dabasgāzes uzpildes stacijas un uzpildes iekārtas, LV NS GS 06-2006/A1:2019. (2006). Search in Google Scholar

19. Bode, I. (2019). Alternatīvās degvielas izmantošana (presentation). Search in Google Scholar

20. Cabinet of Ministers. (2017). On Alternative Fuels Development Plan 2017–2020. Available at https://likumi.lv/ta/en/en/id/290393-on-alternative-fuels-development-plan-20172020 Search in Google Scholar

21. Jēkabpils autobusu parks. (2019). Jaunie autobusi ir gatavi darbam. Available at https://www.jekabpilsap.lv/lv/jaunumi/undefined/jaunie-autobusi-ir-gatavidarbam/ Search in Google Scholar

22. Soikāns, I. (2020). Par 10 miljoniem eiro Daugavpilī plāno iegādāties jaunus autobusus. Available at https://www.lsm.lv/raksts/zinas/ekonomika/par-10-miljoniemeiro-daugavpili-plano-iegadaties-jaunusautobusus.a360877/ Search in Google Scholar

23. Virši-A. (2021). Gas Stations. CNG. Available at Search in Google Scholar

24. https://www.virsi.lv/lv/uzpildes-stacijas?st=&search=&s%5B%5D=14&location= Search in Google Scholar

25. Hokerts, J. (2020). Alternatīvās degvielas no šodienas skatpunkta. Enerģija un Pasaule, 2/121. Search in Google Scholar

26. Savickis, J., Zemite, L., Jansons, L., Zeltins, N., Bode, I., Ansone, A. … & Koposovs, A. (2021). Liquefied Natural Gas Infrastructure and Prospects for the Use of LNG in the Baltic States and Finland. Latvian Journal of Physics and Technical Sciences, 58 (2), 45–63. doi: 10.2478/lpts-2021-001110.2478/lpts-2021-0011 Search in Google Scholar

27. CSDD. (2019). Likme vieglajiem auto (nodokļa likmes no 01.01.2019.). Available at https://www.csdd.lv/transportlidzeklaekspluatacijas-nodoklis/likme-vieglajiem-auto-nodokla-likmes-no-01-01-2019 Search in Google Scholar

28. Gaso. (2019). Kundzinsalas Southern Project. Technical Requirements. Available at lng.lv Search in Google Scholar

29. Skulte LNG Terminal. (2019). Terminal Design. Available at https://www.skultelng.lv/en/the_project/#i32 Search in Google Scholar

30. Sināts, M. (2020). Compressed Natural Gas as an Alternative Fuel for Road Transport in Latvia. Master Thesis. Riga: RTU. Search in Google Scholar

31. Birzietis, G., Gulbis, V., & Šmigins. (2005). Biodegvielu potenciāls, iespējas un šķēršļi saistībā ar ES direktīvas 2003/30/EK īstenošanu Latvijā. Available at https://docplayer.net/22510512-Biodegvielupotencials-iespejas-un-skersli-saistibaar-es-direktivas-2003-30-ek-istenosanulatvija.html Search in Google Scholar

32. European Biogas Association, Gas Infrastructure Europe. (2020). The European Biomethane Map 2020. Available at https://www.europeanbiogas.eu/wp-content/uploads/2020/06/GIE_EBA_BIO_2020_A0_FULL_FINAL.pdf Search in Google Scholar

33. Savickis, J., Zemite, L., Zeltins, N., Bode, I., Jansons, L., Dzelzitis, E., & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–50. doi: 10.2478/lpts-2020-002010.2478/lpts-2020-0020 Search in Google Scholar

34. CSDD. (n.d.). Reģistrēto transportlīdzekļu skaits, Reģistrēto transportlīdzekļu sadalījums pēc degvielas veida. Available at https://www.csdd.lv/cck?Itemid=327&collection=fails&file=doc_fails&id=1134&task=download&xi=4 Search in Google Scholar

35. Autobrava Motors. (n.d.). SEAT Leon Technical Specification and Offers. Available at https://modeli.autobrava.lv/seat/wp-content/uploads/sites/12/2018/07/seat_leon_2701.pdf Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics