Cite

1. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential Deposition as A Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499 (7458), 316–319. DOI: 10.1038/nature1234010.1038/nature1234023842493Search in Google Scholar

2. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501 (7467), 395–398. DOI: 10.1038/nature1250910.1038/nature1250924025775Search in Google Scholar

3. Cressey, D., Ledford, H., Reardon, S., Gibney, E., Tollefson, J., Schiermeier, Q., & Peplow, M. (2013). 365 Days: Nature’s 10. Nature, 504 (7480), 357–365. DOI: 10.1038/504357a10.1038/504357a24352276Search in Google Scholar

4. Zhao, Y., & Zhu, K. (2016). Organic– Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chemical Society Reviews, 45 (3), 655–689. DOI: 10.1039/C4CS00458B10.1039/C4CS00458BSearch in Google Scholar

5. Best Research-Cell Efficiency Chart. (2019). National Renewable Energy Laboratory. Retrieved 1 August 2019, from https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190703.pdfSearch in Google Scholar

6. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2014). High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials, 26 (10), 1584–1589. DOI: 10.1002/adma.20130517210.1002/adma.201305172472284824757716Search in Google Scholar

7. Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research Update: Physical and Electrical Characteristics of Lead Halide Perovskites for Solar Cell Applications. APL Materials, 2 (4), 040701. DOI: 10.1063/1.487179510.1063/1.4871795Search in Google Scholar

8. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., & Han, H. (2014). A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science, 345 (6194), 295–298. DOI: 10.1126/science. 125476310.1126/scienceSearch in Google Scholar

9. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348 (6240), 1234–1237. DOI: 10.1126/science.aaa927210.1126/science.aaa927225999372Search in Google Scholar

10. Qing, J., Chandran, H.-T., Cheng, Y.-H., Liu, X.-K., Li, H.-W., Tsang, S.-W., & Lee, C.-S. (2015). Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS Applied Materials & Interfaces, 7 (41), 23110–23116. DOI: 10.1021/acsami.5b0681910.1021/acsami.5b0681926442432Search in Google Scholar

11. de Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., & Ginger, D. S. (2015). Impact of Microstructure on Local Carrier Lifetime in Perovskite Solar Cells. Science, 348 (6235), 683–686. DOI: 10.1126/science.aaa533310.1126/science.aaa533325931446Search in Google Scholar

12. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., & Zhang, X. (2017). Elucidating the Role of Chlorine in Perovskite Solar Cells. Journal of Materials Chemistry A, 5 (16), 7423–7432. DOI: 10.1039/C7TA00973A10.1039/C7TA00973ASearch in Google Scholar

13. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., & Huang, J. (2015). Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 347 (6225), 967–970. DOI: 10.1126/science.aaa576010.1126/science.aaa576025636799Search in Google Scholar

14. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., & Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342 (6156), 341–344. DOI: 10.1126/science.124398210.1126/science.124398224136964Search in Google Scholar

15. Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Gratzel, M., & Sum, T. C. (2013). Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342 (6156), 344–347. DOI: 10.1126/science.124316710.1126/science.124316724136965Search in Google Scholar

16. Hutter, E. M., Eperon, G. E., Stranks, S. D., & Savenije, T. J. (2015). Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. The Journal of Physical Chemistry Letters, 6 (15), 3082–3090. DOI: 10.1021/acs.jpclett.5b0136110.1021/acs.jpclett.5b0136126267206Search in Google Scholar

17. Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The Emergence of Perovskite Solar Cells. Nature Photonics, 8 (7), 506–514. DOI: 10.1038/nphoton.2014.13410.1038/nphoton.2014.134Search in Google Scholar

18. Miyasaka, T. (2015). Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 44 (6), 720–729. DOI: 10.1246/cl.15017510.1246/cl.150175Search in Google Scholar

19. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131 (17), 6050–6051. DOI: 10.1021/ja809598r10.1021/ja809598r19366264Search in Google Scholar

20. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., & Mosca, R. (2013). MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 25 (22), 4613–4618. DOI: 10.1021/cm402919x10.1021/cm402919xSearch in Google Scholar

21. Zheng, L., Zhang, D., Ma, Y., Lu, Z., Chen, Z., Wang, S., & Gong, Q. (2015). Morphology Control of the Perovskite Films for Efficient Solar Cells. Dalton Transactions, 44 (23), 10582–10593. DOI: 10.1039/C4DT03869J10.1039/C4DT03869J25800254Search in Google Scholar

22. Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Leonat, L., & Bauer, S. (2015). Flexible High Power-Per-Weight Perovskite Solar Cells with Chromium Oxide–Metal Contacts for Improved Stability in Air. Nature Materials, 14 (10), 1032–1039. DOI: 10.1038/nmat438810.1038/nmat438826301766Search in Google Scholar

23. Saba, M., Quochi, F., Mura, A., & Bongiovanni, G. (2016). Excited State Properties of Hybrid Perovskites. Accounts of Chemical Research, 49 (1), 166–173. DOI: 10.1021/acs.accounts.5b0044510.1021/acs.accounts.5b0044526696363Search in Google Scholar

24. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L., & Meredith, P. (2015). Electro-Optics of Perovskite Solar Cells. Nature Photonics, 9 (2), 106–112. DOI: 10.1038/nphoton.2014.28410.1038/nphoton.2014.284Search in Google Scholar

25. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., & Kanemitsu, Y. (2015). Photoelectronic Responses in Solution-Processed Perovskite CH3NH3PbI3 Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy. IEEE Journal of Photovoltaics, 5 (1), 401–405. DOI: 10.1109/JPHOTOV.2014.236411510.1109/JPHOTOV.2014.2364115Search in Google Scholar

26. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J. T.-W., Stranks, S. D., & Nicholas, R. J. (2015). Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic–Inorganic Tri-Halide Perovskites. Nature Physics, 11 (7), 582–587. DOI: 10.1038/nphys335710.1038/nphys3357Search in Google Scholar

27. Ruf, F., Aygüler, M. F., Giesbrecht, N., Rendenbach, B., Magin, A., Docampo, P., & Hetterich, M. (2019). Temperature-Dependent Studies of Exciton Binding Energy and Phase-Transition Suppression in (Cs,FA,MA)Pb(I,Br)3 Perovskites. APL Materials, 7 (3), 031113. DOI: 10.1063/1.508379210.1063/1.5083792Search in Google Scholar

28. Tombe, S., Adam, G., Heilbrunner, H., Yumusak, C., Apaydin, D. H., Hailegnaw, B., & Scharber, M. C. (2018). The Influence of Perovskite Precursor Composition on the Morphology and Photovoltaic Performance of Mixed Halide MAPbI3-xClx Solar Cells. Solar Energy, 163, 215–223. DOI: 10.1016/j.solener.2018.01.08310.1016/j.solener.2018.01.083Search in Google Scholar

29. Yu, H., Wang, F., Xie, F., Li, W., Chen, J., & Zhao, N. (2014). The Role of Chlorine in the Formation Process of “CH3NH3PbI3-xClx” Perovskite. Advanced Functional Materials, 24 (45), 7102–7108. DOI: 10.1002/adfm.20140187210.1002/adfm.201401872Search in Google Scholar

30. Xie, F. X., Su, H., Mao, J., Wong, K. S., & Choy, W. C. H. (2016). Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. The Journal of Physical Chemistry C, 120 (38), 21248–21253. DOI: 10.1021/acs. jpcc.6b06914Search in Google Scholar

31. Stewart, R. J., Grieco, C., Larsen, A. V., Doucette, G. S., & Asbury, J. B. (2016). Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics. The Journal of Physical Chemistry C, 120 (23), 12392–12402. DOI: 10.1021/acs. jpcc.6b03472Search in Google Scholar

32. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338 (6107), 643–647. DOI: 10.1126/science.122860410.1126/science.122860423042296Search in Google Scholar

33. Di Giacomo, F., Zardetto, V., Lucarelli, G., Cinà, L., Di Carlo, A., Creatore, M., & Brown, T. M. (2016). Mesoporous Perovskite Solar Cells and the Role of Nanoscale Compact Layers for Remarkable All-Round High Efficiency under both Indoor and Outdoor Illumination. Nano Energy, 30, 460–469. DOI: 10.1016/j. nanoen.2016.10.030Search in Google Scholar

34. Fan, Y., Qin, H., Ye, W., Liu, M., Huang, F., & Zhong, D. (2018). Improving the Stability of Methylammonium Lead Iodide Perovskite Solar Cells by Cesium Doping. Thin Solid Films, 667, 40–47. DOI: 10.1016/j.tsf.2018.10.00110.1016/j.tsf.2018.10.001Search in Google Scholar

35. You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., & Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 8 (2), 1674–1680. DOI: 10.1021/nn406020d10.1021/nn406020d24386933Search in Google Scholar

36. Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S. T., Xin, X.-K., & Jen, A. K.-Y. (2014). Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 26 (22), 3748–3754. DOI: 10.1002/adma.20140023110.1002/adma.20140023124634141Search in Google Scholar

37. Heo, J. H., Han, H. J., Kim, D., Ahn, T. K., & Im, S. H. (2015). Hysteresis-Less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency. Energy & Environmental Science, 8 (5), 1602–1608. DOI: 10.1039/C5EE00120J10.1039/C5EE00120JSearch in Google Scholar

38. Ye, M., Hong, X., Zhang, F., & Liu, X. (2016). Recent Advancements in Perovskite Solar Cells: Flexibility, Stability And Large Scale. Journal of Materials Chemistry A, 4 (18), 6755–6771. DOI: 10.1039/C5TA09661H10.1039/C5TA09661HSearch in Google Scholar

39. Chen, Y., Chen, T., & Dai, L. (2015). Layer-by-Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 27 (6), 1053–1059. DOI: 10.1002/adma. 201404147Search in Google Scholar

40. Seo, J., Park, S., Chan Kim, Y., Jeon, N. J., Noh, J. H., Yoon, S. C., & Seok, S. Il. (2014). Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p–i–n Perovskite Solar Cells. Energy Environ. Sci., 7 (8), 2642–2646. DOI: 10.1039/C4EE01216J10.1039/C4EE01216JSearch in Google Scholar

41. Lian, J., Wang, Q., Yuan, Y., Shao, Y., & Huang, J. (2015). Organic Solvent Vapor Sensitive Methylammonium Lead Trihalide Film Formation for Efficient Hybrid Perovskite Solar Cells. Journal of Materials Chemistry A, 3 (17), 9146–9151. DOI: 10.1039/C5TA01595B10.1039/C5TA01595BSearch in Google Scholar

42. Chern, Y.-C., Wu, H.-R., Chen, Y.-C., Zan, H.-W., Meng, H.-F., & Horng, S.-F. (2015). Reliable Solution Processed Planar Perovskite Hybrid Solar Cells with Large-Area Uniformity by Chloroform Soaking and Spin Rinsing Induced Surface Precipitation. AIP Advances, 5 (8), 087125. DOI: 10.1063/1.492851610.1063/1.4928516Search in Google Scholar

43. Huang, J., Wang, M., Ding, L., Deng, J., & Yao, X. (2016). Efficiency enhancement of the MAPbI3−xClx-Based Perovskite Solar Cell by a Two-Step Annealing Procedure. Semiconductor Science and Technology, 31 (2), 025009. DOI: 10.1088/0268-1242/31/2/02500910.1088/0268-1242/31/2/025009Search in Google Scholar

44. Zhao, P., Kim, B. J., & Jung, H. S. (2018). Passivation in Perovskite Solar Cells: A Review. Materials Today Energy, 7, 267–286. DOI: 10.1016/j.mtener.2018.01.00410.1016/j.mtener.2018.01.004Search in Google Scholar

45. Yu, Y.-Y., Teng, C.-F., Tseng, C., & Wang, Z.-Q. (2018). Fabrication and Characterization of a Solution-Processed Electron Transport Layer for Organic-Inorganic Hybrid Halide Perovskite Photovoltaics. Thin Solid Films, 660, 789–796. DOI: 10.1016/j. tsf.2018.03.057Search in Google Scholar

46. Yerramilli, A. S., Chen, Y., Knight, A., Gogoi, B., Li, L., Song, Y., & Alford, T. L. (2019). Improved Performance of Inverted Perovskite Solar Cells due to the Incorporation of Zirconium Acetylacetonate Buffer Layer. Solar Energy Materials and Solar Cells, 200, 109927. DOI: 10.1016/j. solmat.2019.109927Search in Google Scholar

47. Bao, X., Wang, Y., Zhu, Q., Wang, N., Zhu, D., Wang, J., & Yang, R. (2015). Efficient Planar Perovskite Solar Cells with Large Fill Factor and Excellent Stability. Journal of Power Sources, 297, 53–58. DOI: 10.1016/j.jpowsour.2015.07.08110.1016/j.jpowsour.2015.07.081Search in Google Scholar

48. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nature Communications, 5 (1), 5784. DOI: 10.1038/ncomms678410.1038/ncomms678425503258Search in Google Scholar

49. Lopez-Varo, P., Jiménez-Tejada, J. A., García-Rosell, M., Ravishankar, S., Garcia-Belmonte, G., Bisquert, J., & Almora, O. (2018). Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Advanced Energy Materials, 8 (14), 1702772. DOI: 10.1002/aenm.20170277210.1002/aenm.201702772Search in Google Scholar

50. Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., & Huang, J. (2014). Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process. Energy and Environmental Science, 7 (7), 2359–2365. DOI: 10.1039/C4EE00233D10.1039/C4EE00233DSearch in Google Scholar

51. Niu, G., Guo, X., & Wang, L. (2015). Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. Journal of Materials Chemistry A, 3 (17), 8970–8980. DOI: 10.1039/C4TA04994B10.1039/C4TA04994BSearch in Google Scholar

52. Zhang, L., & Sit, P. H.-L. (2016). Ab Initio Static and Dynamic Study of CH3NH3PbI3 Degradation in the Presence of Water, Hydroxyl Radicals, and Hydroxide Ions. RSC Advances, 6 (80), 76938–76947. DOI: 10.1039/C6RA12781A10.1039/C6RA12781ASearch in Google Scholar

53. Shahbazi, M., & Wang, H. (2016). Progress in Research on the Stability of Organometal Perovskite Solar Cells. Solar Energy, 123, 74–87. DOI: 10.1016/j.solener.2015.11.00810.1016/j.solener.2015.11.008Search in Google Scholar

54. Yang, J., & Kelly, T. L. (2017). Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 56 (1), 92–101. DOI: 10.1021/acs.inorgchem.6b0130710.1021/acs.inorgchem.6b0130727504538Search in Google Scholar

55. Asghar, M. I., Zhang, J., Wang, H., & Lund, P. D. (2017). Device Stability of Perovskite Solar Cells – A Review. Renewable and Sustainable Energy Reviews, 77, 131–146. DOI: 10.1016/j.rser.2017.04.00310.1016/j.rser.2017.04.003Search in Google Scholar

56. Wang, R., Mujahid, M., Duan, Y., Wang, Z.-K., Xue, J., & Yang, Y. (2019). A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 1808843. DOI: 10.1002/adfm.20180884310.1002/adfm.201808843Search in Google Scholar

57. Wang, D., Wright, M., Elumalai, N. K., & Uddin, A. (2016). Stability of Perovskite Solar Cells. Solar Energy Materials and Solar Cells, 147, 255–275. DOI: 10.1016/j. solmat.2015.12.025Search in Google Scholar

58. Li, Y., Xu, X., Wang, C., Ecker, B., Yang, J., Huang, J., & Gao, Y. (2017). Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film. The Journal of Physical Chemistry C, 121 (7), 3904–3910. DOI: 10.1021/acs.jpcc.6b1185310.1021/acs.jpcc.6b11853Search in Google Scholar

59. Li, Y., Xu, X., Wang, C., Wang, C., Xie, F., Yang, J., & Gao, Y. (2015). Degradation by Exposure of Coevaporated CH3NH3PbI3 Thin Films. The Journal of Physical Chemistry C, 119 (42), 23996–24002. DOI: 10.1021/acs.jpcc.5b0767610.1021/acs.jpcc.5b07676Search in Google Scholar

60. Song, Z., Abate, A., Watthage, S. C., Liyanage, G. K., Phillips, A. B., Steiner, U., & Heben, M. J. (2016). Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Advanced Energy Materials, 6 (19), 1600846. DOI: 10.1002/aenm.20160084610.1002/aenm.201600846Search in Google Scholar

61. Wang, Q., Chen, B., Liu, Y., Deng, Y., Bai, Y., Dong, Q., & Huang, J. (2017). Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy & Environmental Science, 10 (2), 516–522. DOI: 10.1039/C6EE02941H10.1039/C6EE02941HSearch in Google Scholar

62. Hall, G. N., Stuckelberger, M., Nietzold, T., Hartman, J., Park, J.-S., Werner, J., & Bertoni, M. I. (2017). The Role of Water in the Reversible Optoelectronic Degradation of Hybrid Perovskites at Low Pressure. The Journal of Physical Chemistry C, 121 (46), 25659–25665. DOI: 10.1021/acs. jpcc.7b06402Search in Google Scholar

63. Nie, W., Tsai, H., Asadpour, R., Blancon, J. C., Neukirch, A. J., Gupta, G., & Mohite, A. D. (2015). High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science, 347 (6221). DOI: 10.1126/science.aaa047210.1126/science.aaa047225635093Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics