Open Access

Gallium Concentration Optimisation of Gallium Doped Zinc Oxide for Improvement of Optical Properties


Cite

1. Janotti, A., & van de Walle, C. G. (2009). Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72 (12). https://doi.org/10.1088/0034-4885/72/12/12650110.1088/0034-4885/72/12/126501Search in Google Scholar

2. Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc Oxide Particles: Synthesis, Properties and Applications. Chemical Engineering Journal, 185–186, 1–22. https://doi.org/10.1016/j.cej.2012.01.07610.1016/j.cej.2012.01.076Search in Google Scholar

3. Mondal, P. (2019). Effect of Oxygen Vacancy Induced Defect on the Optical Emission and Excitonic Lifetime of Intrinsic ZnO. Optical Materials, 98 (August), 109476. https://doi.org/10.1016/j.optmat.2019.10947610.1016/j.optmat.2019.109476Search in Google Scholar

4. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A. … & Morkoç, H. (2005). A comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98 (4), 1–103. https://doi.org/10.1063/1.199266610.1063/1.1992666Search in Google Scholar

5. Procházková, L., Gbur, T., Čuba, V., Jarý, V., & Nikl, M. (2015). Fabrication of Highly Efficient ZnO Nanoscintillators. Optical Materials, 47, 67–71. https://doi.org/10.1016/j.optmat.2015.07.00110.1016/j.optmat.2015.07.001Search in Google Scholar

6. Wang, Z., Nayak, P. K., Caraveo-Frescas, J. A., & Alshareef, H. N. (2016). Recent Developments in p-Type Oxide Semiconductor Materials and Devices. Advanced Materials, 28 (20), 3831–3892. https://doi.org/10.1002/adma.20150308010.1002/adma.201503080Search in Google Scholar

7. Angub, M. C. M., Vergara, C. J. T., Husay, H. A. F., Salvador, A. A., Empizo, M. J. F. … & Somintac, A. S. (2018). Hydrothermal Growth of Vertically Aligned ZnO Nanorods as Potential Scintillator Materials for Radiation Detectors. Journal of Luminescence, 203, 427–435. https://doi.org/10.1016/j.jlumin.2018.05.06210.1016/j.jlumin.2018.05.062Search in Google Scholar

8. Sato, E., Sugimura, S., Endo, H., Oda, Y., Abudurexiti, A. … & Onagawa, J. (2012). 15Mcps Photon-Counting X-ray Computed Tomography System Using a ZnO-MPPC Detector and its Application to Gadolinium Imaging. Applied Radiation and Isotopes, 70 (1), 336–340. https://doi.org/10.1016/j.apradiso.2011.07.00210.1016/j.apradiso.2011.07.002Search in Google Scholar

9. Sato, E., Matsukiyo, H., Osawa, A., Enomoto, T., Watanabe, M. … & Sato, S. (2008). X-ray Computed Tomography System Using a Multipixel Photon Counter. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, 7079(2008), 70790H. https://doi.org/10.1117/12.79543410.1117/12.795434Search in Google Scholar

10. Derenzo, S. E., Weber, M. J., Bourret-Courchesne, E., & Klintenberg, M. K. (2003). The Quest for the Ideal Inorganic Scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505 (1–2), 111–117. https://doi.org/10.1016/S0168-9002(03)01031-310.1016/S0168-9002(03)01031-3Search in Google Scholar

11. Grigorjeva, L., Millers, D., Smits, K., Grabis, J., Fidelus, J. … & Bienkowski, K. (2010). The Luminescence of ZnO Ceramics. Radiation Measurements, 45 (3–6), 441–443. https://doi.org/10.1016/j.radmeas.2010.03.01210.1016/j.radmeas.2010.03.012Search in Google Scholar

12. Li, Q., Liu, X., Gu, M., Huang, S., Zhang, J. … & Zhao, S. (2016). X-ray Excited Luminescence of Ga- and In-doped ZnO Microrods by Annealing Treatment. Superlattices and Microstructures, 98, 351–358. https://doi.org/10.1016/j.spmi.2016.09.00510.1016/j.spmi.2016.09.005Search in Google Scholar

13. Kano, M., Wakamiya, A., Sakai, K., Yamanoi, K., Cadatal-Raduban, M. … & Fukuda, T. (2011). Response-Time-Improved ZnO Scintillator by Impurity Doping. Journal of Crystal Growth, 318 (1), 788–790. https://doi.org/10.1016/j.jcrysgro.2010.10.19210.1016/j.jcrysgro.2010.10.192Search in Google Scholar

14. Demidenko, V. A., Gorokhova, E. I., Khodyuk, I. v., Khristich, O. A., Mikhrin, S. B., & Rodnyi, P. A. (2007). Scintillation Properties of Ceramics Based on Zinc Oxide. Radiation Measurements, 42 (4–5), 549–552. https://doi.org/10.1016/j.radmeas.2007.01.05010.1016/j.radmeas.2007.01.050Search in Google Scholar

15. al Abdullah, K., Awad, S., Zaraket, J., & Salame, C. (2017). Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying their Structural and Electrical Properties at Different Temperature. Energy Procedia, 119, 565–570. https://doi.org/10.1016/j.egypro.2017.07.08010.1016/j.egypro.2017.07.080Search in Google Scholar

16. Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO Nanostructures by Chemical Precipitation Method. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 41 (7), 814–819. https://doi.org/10.1080/15533174.2011.59130810.1080/15533174.2011.591308Search in Google Scholar

17. Ghoshal, T., Biswas, S., Paul, M., & De, S. K. (2009). Synthesis of ZnO Nanoparticles by Solvothermal Method and their Ammonia Sensing Properties. Journal of Nanoscience and Nanotechnology, 9 (10), 5973–5980. https://doi.org/10.1166/jnn.2009.129010.1166/jnn.2009.129019908483Search in Google Scholar

18. Thamima, M., & Karuppuchamy, S. (2015). Microwave Assisted Synthesis of Zinc Oxide Nanoparticles. International Journal of ChemTech Research, 8 (11), 250–256. https://doi.org/10.1016/j.mspro.2015.11.10110.1016/j.mspro.2015.11.101Search in Google Scholar

19. Jayathilake, D. S. Y., Peiris, T. A. N., Sagu, J. S., Potter, D. B., Wijayantha, K. G. U. … & Southee, D. J. (2017). Microwave-Assisted Synthesis and Processing of Al-Doped, Ga-Doped, and Al, Ga Codoped ZnO for the Pursuit of Optimal Conductivity for Transparent Conducting Film Fabrication. ACS Sustainable Chemistry and Engineering, 5 (6), 4820–4829. https://doi.org/10.1021/acssuschemeng.7b0026310.1021/acssuschemeng.7b00263Search in Google Scholar

20. Makino, T., Segawa, Y., Yoshida, S., Tsukazaki, A., Ohtomo, A., & Kawasaki, M. (2004). Gallium Concentration Dependence of Room-Temperature Near-Band-Edge Luminescence in n-Type ZnO:Ga. Applied Physics Letters, 85 (5), 759–761. https://doi.org/10.1063/1.177663010.1063/1.1776630Search in Google Scholar

21. Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D. … & Rodina, A. V. (2004). Bound Exciton and Donor-Acceptor Pair Recombinations in ZnO. Physica Status Solidi (B) Basic Research, 241 (2), 231–260. https://doi.org/10.1002/pssb.20030196210.1002/pssb.200301962Search in Google Scholar

22. Kotomin, E. A., & Doktorov, A. B. (1982). Theory of Tunneling Recombination of Defects Stimulated by their Motion II. Three Recombination Mechanisms. Physica Status Solidi (B), 114 (2), 287–318. https://doi.org/10.1002/pssb.222114020210.1002/pssb.2221140202Search in Google Scholar

23. Kim, J., Naik, G. V., Gavrilenko, A. V., Dondapati, K., Gavrilenko, V. I. … & Boltasseva, A. (2014). Optical Properties of Gallium-Doped Zinc Oxide – A Low-Loss Plasmonic Material: First-Principles Theory and Experiment. Physical Review X, 3 (4), 1–9. https://doi.org/10.1103/PhysRevX.3.041Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics