Cite

1. Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, S. … & Morkoc, H. (2005). A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98, 04301l.Search in Google Scholar

2. Yan, T., Trinkler, L., Korsaks, V., Lu, C. Y., Berzina, B. ... & Ploog, K. H. (2020). Anisotropic Photoluminescence of Nonpolar ZnO Epilayers and ZnO/Zn1−xMgxO Multip-le Quantum Wells Grown on LiGaO2 Substrate. Optic Express, 28 (4), 5629–5638.10.1364/OE.385828Search in Google Scholar

3. Grigorjeva, L., Miller, D., Grabis, J., Monty, C., Kalinko, A. .... & Lojkowski, W. (2008). Luminiscence Properties of ZnO Nanocrystals and Ceramics. IEEE Transactions on Nuclear Science, 55, 1551–1555.10.1109/TNS.2008.921931Search in Google Scholar

4. Rodnyi, P. A., Chernenko, K. A., Gorokhova, E. I., Kozlovskii, S. S., Khanin, V. M., & Khodyuk, I.V. (2012). Novel Scintillation Material – ZnO Transparent Ceramics. IEEE Transactions on Nuclear Science, 59 (5), 2152–2155.10.1109/TNS.2012.2189896Search in Google Scholar

5. Wilkinson, J., Ucer, K. B., & Williams, R. T. (2005). The Oscillator Strength of Extended Exciton States and Possibility for Very Fast Scintillators. Nuclear Instruments and Methods in Physics Research, A., 537, 66–70.10.1016/j.nima.2004.07.236Search in Google Scholar

6. Makino, T., Segawa, Y., Yoshida, S., Tsukazaki, A., Ohtomo, A., & Kawasaki, M. (2004). Gallium Concentration Dependence Of Room Temperature Near-Band-Edge Luminescence in n-Type ZnO:Ga. Applied Physics Letters, 85 (5), 759–761.10.1063/1.1776630Search in Google Scholar

7. Kano, M., Wakamiya, A., Sakai, K., Yamanoi, K., Cadatal-Raduban, M. … & Fukuda, T. (2011). Response-Time-Improved ZnO Scintillator by Impurity Doping. Journal of Crystal Growth, 318 (1), 788–790.10.1016/j.jcrysgro.2010.10.192Search in Google Scholar

8. Muktepavela, F., Maniks, J., Grigorjeva, L., Zabels, R., Rodnyi, P., & Gorokhova, E. (2018). Effect of In Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as Material for Scintillators. Latvian Journal of Physics and Technical Sciences, 55 (6), 35–42.10.2478/lpts-2018-0042Search in Google Scholar

9. Chernenko, K. A., Gorokhova, I., Erońko, S. B., Sandulenko, A., Venevtsev, I. D. ...& Rodnyi, P. (2018). Structural, Optical and Luminescent Properties of ZnO:Ga and ZnO:In Ceramics. IEEE Transactions on Nuclear Science, 65 (8), 2196–2202.10.1109/TNS.2018.2810331Search in Google Scholar

10. McLean, D. (1977). Mechanical properties of metals. Krieger Publishing Company.Search in Google Scholar

11. Fisher-Cripps, A.C. (2002). Nanoindentation. NY. Springer.10.1007/978-0-387-22462-6Search in Google Scholar

12. Gouldstone, A., Koh, H. J., Zeng, K. Y, Giannakopoulos, A. E., & Suresh, S. (2000). Discrete and Continuous Deformation during Nanoindentation of Thin Films. Acta Materialia, 48 (9) 2277–2295.10.1016/S1359-6454(00)00009-4Search in Google Scholar

13. Ivor, M., Medved, D., Vojtko, M., Naughton-Duszova, A., Marciniak, L., & Dusza, J. (2020). Nanoindentation and Tribology of ZrB2 Based Luminescent Ceramic. Journal of European Ceramics Society, 40 (14) 4901–4908.10.1016/j.jeurceramsoc.2020.03.021Search in Google Scholar

14. Zabels, R., Muktepavela, F., Grigorjeva, L., Tamanis, E., & Mishels-Piesins, M. (2010). Nanoindentation and Photoluminescence Characterization of ZnO Thin Films and Single Crystals. Journal of Optical Materials, 32 (8), 818–822.10.1016/j.optmat.2010.02.002Search in Google Scholar

15. Muktepavela, F., Bakradze G., & Sursaeva, V. (2008). Micromechanical Properties of Grain Boundaries and Triple Junctions in Polycrystalline Metals Exhibiting Grain Boundary Sliding at 293K. Journal of Materials Science, 43 (11) 3848–3854.Search in Google Scholar

16. Pearton, S. J., Yang, J., Cary, P. H. IV., Ren, F., Kim, J. … & Mastro, M., A. (2018). A Review of Ga2O3 Materials, Processing, and Devices. Applied Physics Review, 5 (1), 011301.10.1063/1.5006941Search in Google Scholar

17. Gong, J., Wang, J., & Guyan, Z. (2002). Indentation Toughness of Ceramics: A Modified Approach. Journal of Materials Science, 37, 865–869.10.1023/A:1013816604106Search in Google Scholar

18. Yonenaga, I. (2005). Hardness, Yield Strength and Dislocation Velocity in Elemental and Compound Semiconductors. Materials Transaction, 46 (9), 1979–1985.10.2320/matertrans.46.1979Search in Google Scholar

19. Milman,Yu. V., Galanov, B. A., & Chugunova, S. I. (1993). Plasticity Characteristics Obtained through Hardness Measurement. Acta Metallurgica et Materialia, 41 (9), 2523–2532.10.1016/0956-7151(93)90122-9Search in Google Scholar

20. Nahm, C. W., & Park, C. H. (2000). Microstructure, Electrical Properties, and Degradation Behavior of Praseodymium Oxides-Based Zinc Oxide Varistors Doped with Y2O3. Journal of Materials Science, 35 (12), 3037–3042.10.1023/A:1004749214640Search in Google Scholar

21. Muktepavela, F., & Maniks, J. (2003). Interface Diffusion Controlled Sintering of Atomically Clean Surfaces of Metals. Defects and Diffusion Forum, 216–217, 169–174.10.4028/www.scientific.net/DDF.216-217.169Search in Google Scholar

22. Kelly, J.P., & Graeve, O. A. (2012). Effect of Powder Characteristics on Nanosintering Mechanisms of Convention Nanodensification and Field Assisted Processes. Sintering. Springer, Berlin, Heidelberg, 57–95.Search in Google Scholar

23. Vorobyeva, N. A., Rumyanceva, M. N., Forsh, P. A., & Gaskov, A. M. (2013). Conductivity of Nanocrystalline ZnO(Ga). Semiconductors, 47 (5), 650–564.10.1134/S1063782613050242Search in Google Scholar

24. Ewsuk, K. G., Ellerby, D.T., & DiAntonio, C., B. (2006). Analysis of Nanocrystalline and Microcrystalline ZnO Sintering Using Master Sintering Curves. Journal of American Ceramics Society, 89 (6), 2003–2009.10.1111/j.1551-2916.2006.00990.xSearch in Google Scholar

25. Huang, G. Y., Wang, C. Y., & Wang, J .T. (2009). Vacancy-Assisted Diffusion Mechanism of Group-III Elements in ZnO: An Ab Initio Study. Journal of Applied Physics, 105 (7), 073504.10.1063/1.3103307Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics