Cite

1. International Gas Union. (2020). Global Gas Report 2020. [online]. [accessed 14 November 2020]. Available at https://ceenergynews.com/reports/igu-global-gas-report-2020/Search in Google Scholar

2. Stern, J. (2017). The Future of Gas in Decarbonising European Energy Markets: The Need for a New Approach. OIES Paper: NG 116.10.26889/9781784670764Search in Google Scholar

3. Eurostat. (2018). Natural gas supply statistics. [Online]. [Accessed: 8 October 2020]. Available at https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_supply_statistics&oldid=401136Search in Google Scholar

4. Savickis, J., Zeltins, N. & Jansons, L. (2019). Synergy between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (problem statement): The Latvian Perspective. Latvian Journal of Physics and Technical Sciences, 56 (6), 17–32. DOI: 10.2478/lpts-2019-0032.Open DOISearch in Google Scholar

5. Savickis, J., Zeltins, N., Kalvītis, A., & Ščerbickis, I. (2018). Natural Gas Development Prospects in the World, Europe, in the Baltic and Latvia. Energy and World Special Edition (dedicated to the 4th World Latvian Scientists’ Congress, June 2018, Riga).Search in Google Scholar

6. Verdolini, E., Vona, F., & Popp, D. (2018). Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion? Energy Policy, 116, 242–256.10.1016/j.enpol.2018.01.058Search in Google Scholar

7. European Gas Hub. (2019). Lowest European gas prices in 10 years. [online]. [accessed 5 November 2020]. Available at https://www.europeangashub.com/lowest-european-gas-prices-in-10-years.htmlSearch in Google Scholar

8. Interactive CO2 pricing data hub Embler. [online]. [accessed 12 November 2020]. Available at https://ember-climate.org/data/carbon-price-viewer/Search in Google Scholar

9. ECRB. (2019). Monitoring Report on the Functioning of Gas and Electricity Retail Markets in the Energy Community in 2018.Search in Google Scholar

10. Eurostat. (n.d.). Gas prices by type of user. [online]. [accessed 3 November 2020]. Available at https://ec.europa.eu/eurostat/web/products-datasets/-/ten00118Search in Google Scholar

11. Statista. (n.d.). Share of natural gas imported to the European Union (EU) from Russia from 2010 to 2018 (as percentage of total extra-EU natural gas imports). [online]. [accessed 22 November 2020]. Available at https://www.statista.com/statistics/1021735/share-russian-gas-imports-eu/Search in Google Scholar

12. European Environment Agency. (2018). Air quality in Europe – 2018 Report. [online]. [accessed 1 November 2020]. Available at https://www.eea.europa.eu/publications/air-quality-in-europe-2018Search in Google Scholar

13. International Energy Agency. (2019). The Role of gas in today’s energy transitions. World Energy Outlook special report. [online]. [accessed 4 October 2020]. Available at https://webstore.iea.org/login?ReturnUrl=%2fdownload%2fdirect%2f2819%3ffileName%3dTheRoleofGas.pdf&fileName=TheRoleofGas.pdfSearch in Google Scholar

14. PwC. (2015). Realizing the benefits of smart gas distribution. PwC series: The promise and potential of smart gas distribution. [online]. [accessed 20 November 2020]. Available at https://www.pwc.se/sv/energi/assets/realizing-the-benefits-of-smart-gas-distribution.pdfSearch in Google Scholar

15. Lund, H., Østergaard, P.A., Connolly, D., & Mathiesen, B.V. (2017). Smart Energy and Smart Energy Systems, Energy, 137, 556–565. DOI 10.1016/j.energy.2017.05.123Search in Google Scholar

16. Savickis, J., Zemite, L., Zeltins, N., Bode, I., Jansons, L., Dzelzitis, E., … & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–51. DOI: 10.2478/lpts-2020-0020.Open DOISearch in Google Scholar

17. Smart Energy Networks. (2015). Vision for smart energy in Denmark: Research, development and demonstration. [online]. [accessed 14 November 2020]. Available at http://www.smartenergynetworks.dk/uploads/3/9/5/5/39555879/vision_for_smart_energy_in_denmark.pdfSearch in Google Scholar

18. Miller, W.J. (2017) Internet of Things (IoT) for smart energy systems. In Gabbar, H.A. (ed.) Smart Energy Grid Engineering. [online]. [accessed 2 November 2020]. Available at https://www.sciencedirect.com/science/article/pii/B978012805343000011510.1016/B978-0-12-805343-0.00011-5Search in Google Scholar

19. Staffell, I., Scamman, D., Velazquez Abad A., Balcombe, P., Dodds, P., Ekins, P., … & Ward, K. (2018). The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy & Environmental Science, 12 (2): 463–491. DOI: 10.1039/C8EE01157EOpen DOISearch in Google Scholar

20. Bouhafs, F., Mackay, M., & Merabti, M. (2014). Communication challenges and solutions in the smart grid. Springer10.1007/978-1-4939-2184-3Search in Google Scholar

21. Sioshansi, F. (ed.). (2019). Consumer, prosumer, prosumager: How service innovations will disrupt the utility business model. Academic Press.Search in Google Scholar

22. Smart Energy. (2015). IGU World Gas Congress 2015. Grid aspects related to Gas.Search in Google Scholar

23. Sayed, K., & Gabbar, H.A. (2017). SCADA and smart energy grid control automation. In Gabbar, H. A. (ed.) Smart Energy Grid Engineering. 10.1016/B978-0-12-805343-0.00018-810.1016/B978-0-12-805343-0.00018-8Search in Google Scholar

24. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). [online]. [accessed 20 October 2020]. Available at https://eur-lex.europa.eu/eli/reg/2016/679/ojSearch in Google Scholar

25. Fizisko personu datu apstrādes likums. (2018). [online]. [accessed 6 October 2020]. Available at https://likumi.lv/ta/id/300099-fizisko-personu-datu-apstrades-likumsSearch in Google Scholar

26. ERRA. (2010). Regulatory aspects of smart metering. [online]. [accessed 5 November 2020]. Available at https://erranet.org/wpcontent/uploads/2016/03/KEMA_Issue_Paper_Smart_Metering_FINAL_eng.pdfSearch in Google Scholar

27. Geelen, D., van Kempen, G., van Hoogstraten, F., & Liotta A. (2012). A wireless mesh communication protocol for smart-metering. International Conference on Computing, Networking and Communications (ICNC), 30 January–2 February 2012, Maui, HI, USA. DOI: 10.1109/ICCNC.2012.6167440Open DOISearch in Google Scholar

28. Delta Energy and Environment. (2019). Smart meter benefits. Role of smart meters in responding to climate change. [online]. [accessed 9 November 2020]. Available at https://www.smartenergygb.org/en/resources/press-centre/press-releases-folder/delta-ee-carbon-savingsSearch in Google Scholar

29. Toratti, J. (2020). Appraising the economics of smart meters: Costs and benefits. London: Routledge.10.4324/9780367203375Search in Google Scholar

30. Savickis, J., Zemite, L., Bode, I., & Jansons. L. (2020). Natural Gas Metering and its Accuracy in the Smart Gas Supply Systems. Latvian Journal of Physics and Technical Sciences, 57 (5), 39–50. DOI: 10.2478/lpts-2020-0026.Open DOISearch in Google Scholar

31. Report from the Commission. Benchmarking Smart Metering Deployment in the EU-27 with a Focus on Electricity /* COM/2014/0356 final */ [online]. [accessed 1 November 2020]. Available at https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=COM%3A2014%3A356%3AFINSearch in Google Scholar

32. Bianchini, A., Saccani, C., Guzzini, A., & Pellegrini, M. (2018). Gas smart metering in Italy: State of the art and analysis of potentials and technical issues. [online]. [accessed 10 November 2020]. Available at https://www.researchgate.net/publication/330260200_Gas_smart_metering_in_Italy_state_of_the_art_and_analysis_of_potentials_and_technical_issuesSearch in Google Scholar

33. Zemite, L., Kutjuns, A., Bode, I., Kunickis, M., & Zeltins, N. (2018). Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia. Latvian Journal of Physics and Technical Sciences, 55 (1), 22–34. DOI: 10.2478/lpts-2018-0003.Open DOISearch in Google Scholar

34. Koposovs, A., Bode, I., Zemite, L., Dzelzitis, E., Odineca, T., Ansone, A., … & Jasevics, A. (2019). Optimization of the Selection Method for Reconstruction of Outworn Gas Distribution Pipeline. Latvian Journal of Physics and Technical Sciences, 56 (5), 33–44. DOI: 10.2478/lpts-2019-0029.Open DOISearch in Google Scholar

35. Stoltenkampa, P.W., Bergervoetb, J.T.M., Willemsa, J.F.H., van Uitterta, F.M.R., & Hirschberga, A. (2008). Response of Turbine Flow Meters to Acoustic Perturbations. Journal of Sound and Vibration, 258–278.10.1016/j.jsv.2008.01.051Search in Google Scholar

36. Cascetta, F., & Rotondo, G. (2015). Effects of Intermittent Flows on Turbine Gas Meters Accuracy. Second University of Naples, Italy Measurement, 69, 280–286.10.1016/j.measurement.2015.02.008Search in Google Scholar

37. Platais, I., & Graudiņš, P. (2008). Gāzapgāde. 1.daļa. Ogļūdenražu deggāzes, to īpašības, metroloģija un sadedzināšana. Rīga: RTU izdevniecība.Search in Google Scholar

38. Homann, K., Reimert, R., & Bernhard, K. (2013). The gas engineer’s dictionary. Supply infrastructure from A to Z. Germany: DIV Deutscher Industrieverlag GmbH.Search in Google Scholar

39. Energoefektivitātes likums. (2016). [online]. [accessed 11 August 2020]. Available at https://likumi.lv/doc.php?id=280932Search in Google Scholar

40. Hodge, M., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22 (2), 85–126.10.1023/B:AIRE.0000045502.10941.a9Search in Google Scholar

41. Outlook for biogas and prospects for organic growth. (2020). [Online]. [Accessed: 6 October 2020]. Available at https://www.euneighbours.eu/sites/default/files/publications/202003/Outlook_for_biogas_and_biomethane.pdfSearch in Google Scholar

42. European Biogas Association. (n.d.). EBA’s biomethane fact sheet. [Online]. [Accessed: 22 November 2020]. Available at https://www.europeanbiogas.eu/wp-content/uploads/files/2013/10/eba_biomethane_factsheet.pdfSearch in Google Scholar

43. Green Gas Initiative. (2016). Gas and Gas Infrastructure – the Green Commitment. Recommendations for curbing climate change: Biomethane, power to gas and gas as fuel in transport [online]. [accessed 1 November 2020]. Available at https://www.greengasinitiative.eu/upload/contenu/greengas_initiative_report_web_2016_1.pdfSearch in Google Scholar

44. Ministru kabineta noteikumi Nr. 650. (prot. Nr. 50 5. §) “Prasības biometāna un gāzveida stāvoklī pārvērstas sašķidrinātās dabasgāzes ievadīšanai un transportēšanai dabasgāzes pārvades un sadales sistēmā”. [Online]. [Accessed: 20 October 2020]. Available at: https://likumi.lv/ta/id/285189-prasibas-biometana-un-gazveida-stavokli-parverstas-saskidrinatas-dabasgazes-ievadisanai-un-transportesanai-dabasgazes-parvades-...Search in Google Scholar

45. GASO. [online]. [accessed 20 November 2020]. Available at https://www.gaso.lv/uznemuma-rasanasSearch in Google Scholar

46. Elektroenerģijas un dabasgāzes sadales pakalpojumu kvalitātes pārskats par 2019. gadu [online]. [accessed 1 November 2020]. Available at https://www.sprk.gov.lv/sites/default/files/editor/ED-Kvalitates-parskats_2019%20(3)_0_0.pdfSearch in Google Scholar

47. AS “Gaso”. (2018). Piecu gadu investīciju (attīstības) programma.Search in Google Scholar

48. Bethers, J. (2020). Enerģētikas sektora izaicinājumi ceļā uz klimata neitralitāti 2030/2050. Conference presentation.Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics