Cite

1. Arhun, S., Hnatov, A., Dziubenko, O, & Ponikarovska, S. (2019). A Device for Converting Kinetic Energy of Press into Electric Power as a Means of Energy Saving. J. Korean Soc. Precis. Eng., 36 (1), 105–110.10.7736/KSPE.2019.36.1.105Search in Google Scholar

2. Patļins, A., Arhun, S., Hnatov, A., Dziubenko, O., & Ponikarovska, S. (2018). Determination of the Best Load Parameters for Productive Operation of PV Panels of Series FS-100M and FS-110P for Sustainable Energy Efficient Road Pavement. In 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2018): Conference Proceedings (pp. 1–6), 12–13 November 2018, Riga, Latvia.Search in Google Scholar

3. Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric Buses: A Review of Alternative Powertrains. Renew. Sustain. Energy Rev., 62, 673–684.10.1016/j.rser.2016.05.019Search in Google Scholar

4. Patļins, A., & Kuņicina, N. (2015). The new approach for passenger counting in public transport systems. In: Proceedings of the 2015 IEEE 8th International Acquisition and Advanced Computing Systems: Technology (pp. 53–57), 24–26 September, 2015. Warsaw: IDAAC 2015. ISBN 978-1-4673-8359-2.Search in Google Scholar

5. Patļins, A., & Kuņicina, N. (2014). The Use of remote sensing technology dynamics study and analysis. In: Transport Means 2014: International Conference (pp. 63–66), 23–24 October 2014, Lithuania, Kaunas. ISSN 2351-4604.Search in Google Scholar

6. Patļins, A., & Kuņicina, N. (2015). Real-time data collection and easy passenger counting method for public transport system In: Transport Means 2015: Proceedings of the Conference (pp. 329–332), 22–23 October, 2015, Lithuania, Kaunas, ISSN 1822-296X.Search in Google Scholar

7. Dvadnenko, V., Arhun, S., Bogajevskiy, A., & Ponikarovska, S. (2018). Improvement of economic and Ecological Characteristics of a Car with a Start-Stop System. Int. J. Electr. Hybrid Veh., 10 (3), 209–222.10.1504/IJEHV.2018.097377Search in Google Scholar

8. Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of Different Hybrid Vehicle Architectures. IFAC-Pap., 51 (9), 218–222.10.1016/j.ifacol.2018.07.036Search in Google Scholar

9. Gunji, D., & Fujimoto, H. (2013). Efficiency Analysis of Powertrain with Toroidal Continuously Variable Transmission for Electric Vehicles. In: IECON Proceedings (Industrial Electronics Conference), (pp. 6614–6619).Search in Google Scholar

10. Migal, V., Arhun, Shch., Hnatov, A., Dvadnenko, V., & Ponikarovska, S. (2019). Substantiating the Criteria for Assessing the Quality of Asynchronous Traction Electric Motors in Electric Vehicles and Hybrid Cars. J. Korean Soc. Precis. Eng., 10 (36), 989–999.10.7736/KSPE.2019.36.10.989Search in Google Scholar

11. Xie, S., He, H., & Peng, J. (2017). An Energy Management Strategy Based on Stochastic Model Predictive Control for Plug-in Hybrid Electric Buses. Appl. Energy, 196, 279–288.10.1016/j.apenergy.2016.12.112Search in Google Scholar

12. Onat, N. C., Kucukvar, M., & Tatari, O. (2015). Conventional, Hybrid, Plug-in Hybrid or Electric Vehicles? State-Based Comparative Carbon and Energy Footprint Analysis in the United States. Appl. Energy, 150, 36–49.10.1016/j.apenergy.2015.04.001Search in Google Scholar

13. Huang, Y., Surawski, N. C., Organ, B., Zhou, J. L., Tang, O. H., & Chan, E. F. (2019). Fuel Consumption and Emissions Performance under Real Driving: Comparison between Hybrid and Conventional Vehicles. Sci. Total Environ., 659, 275–282.10.1016/j.scitotenv.2018.12.34930599346Search in Google Scholar

14. Ak, N., & Demirbas, A. (2016). Promising Sources of Energy in the Near Future. Energy Sources Part Recovery Util. Environ. Eff., 38 (12), 1730–1738.10.1080/15567036.2014.966179Search in Google Scholar

15. Borodenko, Yu. N., & Cherevach, A. V. (2012). “Kontseptsiia diahnostyky elektropryvoda hibrydnoho avtomobilia,” [Hybrid Car Electric Drive Diagnostics Concept]. Automobile Transport, 30.Search in Google Scholar

16. Apse-Apsītis, P., Avotiņš, A., & Ribickis, L. (2014). Different approaches consumption monitoring. In: Proceedings of the 16th Eur Electronics and Applications (pp. 1–5), 26 February 2014, Finland, Lappeenranta. Available at: doi:10.1109/EPE.2014.691Search in Google Scholar

17. Deuse, J., Grenard, S., Karoui, K., Samuelsson, O., Gertm Sauhats, A., Ribickis, L., .... & Hager, M. (2006). Sollerkvist Dispersed energy resources with power system in Norma. In: The 41st CIGRE Session: Proceedings (pp. 1–12), 22 February 2006, France, Paris. ISBN 9782858730216.Search in Google Scholar

18. Apse-Apsītis, P., Avotiņš, A., & Ribickis, L. (2013). Self-tuning CoreConverter for Powering Loads on Rotating Shafts. Electron 2013, 19 (2), 41–44. e-ISSN 2029-5731. ISSN 1 doi:10.5755/j01. eee.19.2.3466Search in Google Scholar

19. Malafeev, S. I., & Novgorodov, A. A. (2016). Design and Implementation of Electric Drives and Сontrol Systems for Mining Excavators. Russ. Electr. Eng., 87 (10), 560–565.10.3103/S1068371216100035Search in Google Scholar

20. Ishkova, I., & Vítek, O. (2015). Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis. In: 2015 16th International Scientific Conference on Electric Power Engineering (EPE), (pp. 682–686), 20–22 May 2015, Czech Republic.Search in Google Scholar

21. Verucchi, C., Bossio, J., Bossio, G., & Acosta, G. (2016). Misalignment Detection in Induction Motors with Flexible Coupling by Means of Estimated Torque Analysis and MCSA. Mech. Syst. Signal Process., 80, 570–581.10.1016/j.ymssp.2016.04.035Search in Google Scholar

22. Gan, C., Wu, J., Yang, S., Hu, Y., Cao, W., & Si, J. (2016). Fault Diagnosis Scheme for Open-Circuit Faults in Switched Reluctance Motor Drives Using Fast Fourier Transform Algorithm with Bus Current Detection. IET Power Electron., 9 (1), 20–30.10.1049/iet-pel.2014.0945Search in Google Scholar

23. Chekalin, V. G. (2011). Diagnosis and adjustment of automated electric drives, Uchebnoe posobie dlya VTUZov. Dushanbe: TTU im. M. Osimi.Search in Google Scholar

24. Dąbrowski, Z., & Dziurdź, J. (2016). Simultaneous Analysis of Noise and Vibration of Machines in Vibroacoustic Diagnostics. Arch. Acoust., 41 (4), 783–789.10.1515/aoa-2016-0075Search in Google Scholar

25. Boniecki, R., & Miciak, M. (2018). The Decision Making Process of a State Technical Facilities Based on Rough Set and Vibroacoustic Estimates. MATEC Web of Conferences 2018, 182, 02016.10.1051/matecconf/201818202016Search in Google Scholar

26. Glowacz, A., & Glowacz, Z. (2017). Diagnosis of Stator Faults of the Single-Phase Induction Motor Using Acoustic Signals. Appl. Acoust., 117, 20–27.10.1016/j.apacoust.2016.10.012Search in Google Scholar

27. Borodenko, Y., Ribickis, L., Zabasta, A., Arhun, Shch., Kunicina, N., Hnatova, H.,... & Kunicins, K. Using the Method of the Spectral Analysis in Diagnostics of Electrical Process of Propulsion Systems Power Supply in Electric Car. unpublished.Search in Google Scholar

28. Fedotovs, J., Žiravecka, A., Bunina, I. (2019). Testing of Technical Indicators of Accumulators by Means of Complex Computer Model of EV. Electrical, Control and Communication Engineering, Riga, Latvia – submitted for publication.Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics