Cite

1. Stephen, D. O., & Stephen, P. B. (2008). Glyphosate: A Once-in-a-Century herbicide. Society of Chemical Industry. doi:10.1002/ps.151810.1002/ps.151818273882Search in Google Scholar

2. Linglee, H., Wenchen, K., Hsienchi, C., Jonghuang, J., & Miintsai, L. (2000). Clinical Presentations and Prognostic Factors of a Glyphosate–Surfactant Herbicide Intoxication: A Review of 131 Cases. Academic Emergency Medicine, 7(8), 906–910. doi:10.1111/j.1553-2712.2000.tb02069.x10.1111/j.1553-2712.2000.tb02069.x10958131Search in Google Scholar

3. Roberts, D. M., Buckley, N. A., & Mohamed, F. (201). Acute Self-Poisoning with Glyphosate Herbicide: A Prospective Observational Study of the Clinical Toxicology of Glyphosate-Containing Herbicides in Adults with Acute Self-Poisoning. Clinical Toxicology, 48, 129–136. doi:10.3109/1556365090347649110.3109/15563650903476491287511320136481Search in Google Scholar

4. Shim, Y. K., Steven, M. P., & Wijngaarden, E. (2009). Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study. Environmental Health Perspectives, 117(6), 1002–1006. doi:10.1289/ehp.080020910.1289/ehp.0800209270239419590697Search in Google Scholar

5. Simonetti, E., Cartaud, G., Quinn, R. M., & Dinelli, I. M. (2015). An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour. Journal of AOAC International, 98 (6), 1760–1768. doi:10.5740/jaoacint.15-02410.5740/jaoacint.15-02426651590Search in Google Scholar

6. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. doi:10.3762/bjnano.9.22710.3762/bjnano.9.227614272730254837Search in Google Scholar

7. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 23. doi:10.1016/j.sbsr.2019.10027610.1016/j.sbsr.2019.100276Search in Google Scholar

8. Valle, A. L. (2018). Glyphosate Detection: Methods, Needs and Challenges. Environmental Chemistry Letters. doi:10.1007/s10311-018-0789-510.1007/s10311-018-0789-5Search in Google Scholar

9. Aguirre, M. C., Urreta, S. E., & Gomez, C. G. (2018). A Cu2+-Cu/Glassy Carbon System for Glyphosate Determination. Sensors and Actuators B: Chemical, 284, 675–683. doi:10.1016/j.snb.2018.12.12410.1016/j.snb.2018.12.124Search in Google Scholar

10. Moraes, F., Mascaro, L., Machado, S., & Brett, C. (2010). Direct Electrochemical Determination of Glyphosate at Copper Phthalocyanine/Multiwalled Carbon Nanotube Film Electrodes. Electroanalysis, 22 (14), 1586–1591. doi:10.1002/elan.20090061410.1002/elan.200900614Search in Google Scholar

11. Pintado, S., Amaro, R. R., Mayén, M., & Mellado, J. M. (2012). Electrochemical Determination of the Glyphosate Metabolite Aminomethylphosphonic Acid (AMPA) in Drinking Waters with an Electrodeposited Copper Electrode. International Journal of Eelectrochemical Science, 7, 305–312.10.1016/S1452-3981(23)13339-6Search in Google Scholar

12. Coutinho, C., Silva, M., Machado, S., & Mazo, L. (2007). Influence of Glyphosate on the Copper Dissolution in Phosphate Buffer. Applied Surface Science, 253, 3270–3275. doi:10.1016/j.apsusc.2006.07.02010.1016/j.apsusc.2006.07.020Search in Google Scholar

13. Coutinho, C., Silva, M., Calegaro, M., Machado, S., & Mazo, L. (2007). Investigation of Copper Dissolution in the Presence of Glyphosate Using Hydrodynamic Voltammetry and Chronoamperometry. Solid State Ionics, 178, 161–164. doi:10.1016/j.ssi.2006.10.02710.1016/j.ssi.2006.10.027Search in Google Scholar

14. Kokina, I., Jahundoviča, I., Mickeviča, I., Sledevskis, E., Ogurcovs, A., & Polyakov, B. (2015). The Impact of CdS Nanoparticles on Ploidy and DNA Damage of Rucola (Eruca sativa Mill.) Plants. Journal of Nanomaterials. Article ID 470250. doi:10.1155/2015/47025010.1155/2015/470250Search in Google Scholar

15. Moreno-Olivas, F., Jr., V. U. Gant Jr., Johnson, K. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Random Amplified Polymorphic DNA Reveals that TiO2 Nanoparticles are Genotoxic to Cucurbita Pepo. Journal of Zhejiang University: Science A, 15, 618–623. doi:10.1631/jzus.A140015910.1631/jzus.A1400159Search in Google Scholar

16. Bhaduri, A. M., & Fulekar, M. H. (2015). Biochemical and RAPD Analysis of Hibiscus rosa sinensis Induced by Heavy Metals. Soil and Sediment Contamination: An International Journal, 411–422. doi:10.1080/15320383.2015.97068310.1080/15320383.2015.970683Search in Google Scholar

17. Sorrentino, M. C., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Genotoxic Effect of Pb and Cd on in Vitro Cultures of Sphagnum Palustre: An Evaluation by ISSR Markers. Chemosphere, 208–215. doi:10.1016/j.chemosphere.2017.04.06510.1016/j.chemosphere.2017.04.06528441611Search in Google Scholar

18. Pandey, C., & Gupta, M. (2015). Selenium and Auxin Mitigates Arsenic Stress in Rice (Oryza sativa L.) by Combining the Role of Stress Indicators, Modulators and Genotoxicity Assay. Journal of Hazardous Materials, 384–391. doi:10.1016/j.jhazmat.2015.01.04410.1016/j.jhazmat.2015.01.04425677475Search in Google Scholar

19. Nardemir, G., Agar, G., Arslan, E., & Erturk, F. A. (2015). Determination of Genetic and Epigenetic Effects of Glyphosate on Triticum Aestivum with RAPD and CRED-RA Techniques. Theoretical and Experimental Plant Physiology, 131–139. doi:10.1007/s40626-015-0039-110.1007/s40626-015-0039-1Search in Google Scholar

20. Silprasit, K., Ngamniyom, A., Kerksakul, P., & Thumajitsakul, S. (2016). Using Morphology and Genomic Template Stability (GTS) to Track Herbicide Effect on Some Submersed Aquatic Plants. Applied Environmental Research, 75–85. doi:10.35762/AER.2016.38.1.710.35762/AER.2016.38.1.7Search in Google Scholar

21. Ackova, D. G., Kadifkova-Panovska, T., Andonovska, K. B., & Stafilov, T. (2016). Evaluation of GENOTOXIC VARIATIONS in PLANT MODEL SYSTEMS in a CASE of METAL STRESSORS. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 340–349. doi:10.1080/03601234.2015.112874710.1080/03601234.2015.112874726853058Search in Google Scholar

22. Venkatachalam, P., Jayalakshmi, N., & Geetha, N. (2017). Accumulation Efficiency, Genotoxicity and Antioxidant Defense Mechanisms in Medicinal Plant Acalypha Indica L. under Lead Stress. Chemosphere, 544–553. doi:10.1016/j.chemosphere.2016.12.09210.1016/j.chemosphere.2016.12.09228039833Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics