[1. Real Time World Statistic. (n.d.). Available at https://www.worldometers.info/world-population/]Search in Google Scholar
[2. World Energy Consumption Since 1820 in Charts. (n.d.). Available at https://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts/]Search in Google Scholar
[3. Renewable Energy Statistics. (n.d.). Available at https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics#Renewable_energy_produced_in_the_EU_increased_by_two_thirds_in_2007-2017]Search in Google Scholar
[4. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the reģions: Energy 2020. A strategy for competitive, sustainable and secure energy [COM(2010)639]. Available at https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2020-energy-strategy.]Search in Google Scholar
[5. Global Energy ---amp--- CO2 Status Report (2018). The Latest Trends in Energy and Emissions in 2018. Available at https://www.iea.org/geco/emissions/.]Search in Google Scholar
[6. NASA Earth Observatory. (n.d.). Available at https://earthobservatory.nasa.gov/world-of-change/DecadalTemp]Search in Google Scholar
[7. Tapio, P., Varho, V., ---amp--- Heino, H. (2013). Renewable Energy in the Baltic Sea Region 2025. Journal of East-West Business, 19, 47–62. 10.1080/10669868.2013.779544.10.1080/10669868.2013.779544]Search in Google Scholar
[8. Thomas, J., Barve, K.H., Dwarakish, G., ---amp--- Ranganath, L. (2015). A Review on Assessment of Wave Energy Potential. In National Conference on Futuristic Technology in Civil Engineering for Sustainable Development (178–186), 9 May 2015, Department of Civil Engineering, SJBIT.]Search in Google Scholar
[9. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S.....---amp--- von Stechow, C (2010). Special Report of the Intergovernmental Panel on Climate Change IPPC. Renewable Energy Sources and Climate Change Mitigation. United Kingdom and New York: Cambridge University Press.]Search in Google Scholar
[10. ETIPOCEAN (n.d.). Ocean Energy Statistics 2018: Europe Leading the Sector. Available at https://www.etipocean.eu/news/ocean-energy-statistics-2019/]Search in Google Scholar
[11. IRENA (2014). Wave Energy: Technology Brief. Available at https://www.irena.org/publications/2014/Jun/Wave-energy]Search in Google Scholar
[12. Rusu, E., ---amp--- Onea, F. (2018). A Review of the Technologies for Wave Energy Extraction. Clean Energy, 1. 10.1093/ce/zky003.10.1093/ce/zky003]Search in Google Scholar
[13. Magagna, D., ---amp--- Uihlein, A. (2015). Ocean Energy Development in Europe: Current Status and Future Perspectives. International Journal of Marine Energy, 11, 84–104. https://doi.org/10.1016/j.ijome.2015.05.001.10.1016/j.ijome.2015.05.001]Search in Google Scholar
[14. Melo AB (2010). Pico Power Plant: Perspectives for the Future? Available at http://www.picoowc.net/files/33/new3_84d9ee44e457ddef7f2c4f25dc8fa865.pdf.]Search in Google Scholar
[15. Ocean Energy Systems (2016). Annual Report Ocean Energy Systems 2016. Available at https://report2016.ocean-energy-systems.org/]Search in Google Scholar
[16. ETIPOCEAN (n.d.). EU-funded Ocean Energy Projects Framework Programme 7 ---amp--- Horizon2020. Available at https://www.etipocean.eu/assets/Uploads/170418-EU-funded-projects.pdf]Search in Google Scholar
[17. Ingmarsson, P., ---amp--- Hüffmeier, J. (2019). 2030 and 2050 Baltic Sea Energy Scenarios – Ocean Energy. RISE Research Institutes of Sweden, Swedish Agency for Marine and Water Management.]Search in Google Scholar
[18. Soomere, T., ---amp--- Eelsalu, M. (2014). On the Wave Energy Potential along the Eastern Baltic Sea coast. Renewable Energy: An International Journal, 71, 221–233.10.1016/j.renene.2014.05.025]Search in Google Scholar
[19. Mørk, G., Barstow, S., Kabuth, A., ---amp--- Pontes, M. (2010). Assessing the Global Wave Energy Potential. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China. 3. 10.1115/OMAE2010-20473.10.1115/OMAE2010-20473]Search in Google Scholar
[20. European Commission (n.d.). EU Strategy for the Baltic Sea Region. Available at https://ec.europa.eu/regional_policy/lv/policy/cooperation/macro-regional-strategies/baltic-sea/]Search in Google Scholar
[21. Avotiņš, A., Greivulis, J., ---amp--- Kalniņš, L. (2008). Baltijas jūras potenciāls viļņa enerģijas pārveidošanai. Enerģētika un elektrotehnika, 23, 213–224.]Search in Google Scholar
[22. Jakabson, P. (2011). Mapping and Assessment of the United States Ocean. Wave Energy Electric Power Research Institute, Technical report.]Search in Google Scholar
[23. Beriņš, J., Beriņš, J., ---amp--- Kalnačs, A. (2016). Wave Energy Potential in the Latvian EEZ. Latvian Journal of Physics and Technical Sciences, 3, 22–23.10.1515/lpts-2016-0018]Search in Google Scholar
[24. Radziņš, Z., ---amp--- Zars, V. (1964). Hidrauliskās mašīnas un mehānismi. Latvijas Valsts izdevniecība.]Search in Google Scholar
[25. National Date Buoy Centre (n.d.). Measurement Description and Units. Available at http://www.ndbc.noaa.gov/measdes.shtml]Search in Google Scholar
[26. MK noteikumi. Nr.779 (17.08.2010.). Noteikumi par bāzes līniju punktu koordinātēm.]Search in Google Scholar
[27. Beriņš, J. (2019). Ocean and Marine Energy Options and Development. Doctoral Thesis. Available at https://ortus.rtu.lv/science/lv/publications/29289]Search in Google Scholar
[28. Beriņš, J., ---amp--- Beriņš, J. (2017). New Hydrokinetic Turbine for Free Surface Gravitational Wave Transformation. Latvian Journal of Physics and Technical Sciences, 6, 32–41.10.1515/lpts-2017-0039]Search in Google Scholar
[29. Betz, A. (1966). Introduction to the theory of flow machines. NY: Pergamon Press.]Search in Google Scholar
[30. Powell, W. B., ---amp--- Miesel, S. (2018). Tutorial on Stochastic Optimisation in Energy-Part II: An Energy Storage Illustration. IEEE Trans. Power Syst., 31(2), 1468–1475.10.1109/TPWRS.2015.2424980]Search in Google Scholar
[31. Petrichenko, R., Baltputnis, K., Sauhats, A., ---amp--- Soboļevskis, D. (2017). District Heating Demand Short-Term Forecasting. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I---amp---CPS Europe), (pp. 1374–1378). 6–9 June 2017, Italy, Milan. 10.1109/EEEIC.2017.7977633.10.1109/EEEIC.2017.7977633]Search in Google Scholar
[32. Sauhats, A., Petrichenko, R., Broka, Z., Baltputnis, K., ---amp--- Soboļevskis, D. (2016). ANN-Based Forecasting of Hydropower Reservoir Inflow. In 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2016), 13–14 October 2016, Latvia, Riga. 10.1109/RTUCON.2016.7763129. Electronic ISBN: 978-1-5090-3731-5, USB ISBN: 978-1-5090-3730-810.1109/RTUCON.2016.7763129]Search in Google Scholar
[33. Petrichenko, Ļ., Sauhats, A., Petričenko, R., ---amp--- Bezrukovs, D. (2018). Long-Term Price Forecasting for the Cost-Benefit Analysis of Power Equipment. In 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, 12–14 November 2018, Latvia, Riga. 10.1109/RTUCON.2018.8659888. Electronic ISBN: 978-1-5386-6903-7, USB ISBN: 978-1-5386-6902-010.1109/RTUCON.2018.8659888]Search in Google Scholar
[34. Sauhats, A., Zemīte, L., Petrichenko, Ļ., Moškins, I., ---amp--- Jasevičs, A. (2018). Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices. Energies, 11(11), 1–19. 10.3390/en11113222.10.3390/en11113222]Search in Google Scholar
[35. Energolukss (n.d.). Generators. Available at https://www.energolukss.lv/shop/product/generators-sdmo-diesel-15000-te-xl-c-10kw-riteni-9349?category=8.]Search in Google Scholar