Cite

1. Eurelectric. (2019). Short Paper on the 2050 Objective. Available at https://www.eurelectric.org [08.07.2019]Search in Google Scholar

2. 2030 Climate and Energy Framework (n.d.). Available at https://ec.europa.eu/clima/policies/strategies/2030_en [08.07.2019]Search in Google Scholar

3. Kauliņš, D. (2019). Presentation “Nacionālais enerģētikas un klimata plāns 2021. – 2030. gadam” materials.Search in Google Scholar

4. Eurelectric. (2018). Decarbonisation Pathways. Full study results. Part 1 – European Economy. Part 2 – European Power Sector. Available at https://cdn.eurelectric.org/media/3558/decarbonisation-pathways-all-slideslinks-29112018-h-4484BB0C.pdf [08.07.2019]Search in Google Scholar

5. Sovacool, B. K. (2017). Contestation, Contingency, and Justice in the Nordic Low-Carbon Energy Transition. Energy policy. 102, 569–582.10.1016/j.enpol.2016.12.045Search in Google Scholar

6. IEA. (2016). Nordic Energy Technology Perspectives 2016. Cities, Flexibility and Pathways to Carbon-Neutrality. France: OECD/IEA. Available at https://www.nordicenergy.org/wp-content/uploads/2015/12/Nordic-Energy-Technology-Perspectives-2016.pdf [02.07.2019]Search in Google Scholar

7. Balodis, M., Krickis, O., Gavrilovs, G., Sarma, U., Salcevičs, J., Lūsis, G., ---amp--- Linkevičs, O. (2018). VFB kongress un IERE seminārs Minhenē. Enerģija un Pasaule, 5(112), 20–25.Search in Google Scholar

8. Artelys. (2018). Investigation on the interlinkage between gas and electricity scenarios and infrastructure projects assessment, pp. 1–43.Search in Google Scholar

9. What are Europe’s Biggest Sources of Carbon Emissions? (n.d.) Available at https://www.weforum.org/agenda/2015/11/what-are-europes-biggest-sources-of-carbon-emissions/ [02.07.2019]Search in Google Scholar

10. Balodis, M. (2016). Optimisation model for securing energy supply towards sustainable economic development of Latvia. Riga: RTU.Search in Google Scholar

11. Ivanova, P. (2018). The improvement of flexibility and efficiency of thermal power plants under variable operation conditions. Riga: RTU.Search in Google Scholar

12. Kunickis, M., Balodis, M., Sarma, U., Cers, A., ---amp--- Linkevics, O. (2015). Efficient Use of Cogeneration and Fuel Diversification. Latvian Journal of Physics and Technical Sciences, 52(6), 38–47.10.1515/lpts-2015-0034Search in Google Scholar

13. Ludge, S. (2017). The Value of Flexibility for Fossil-Fired Power Plants under the Conditions of the Strommarkt 2.0. VGB Powertech. 3, 21–24.Search in Google Scholar

14. WEC 6th “Baltic Sea Round Table” (2019). Riga.Search in Google Scholar

15. International Energy Agency. (2014). Energy Technology Perspectives 2014. Harnessing Electricity’s Potential. France: OECD/IEASearch in Google Scholar

16. Lund, H., Ostergaard, P., A., Connolly, D., ---amp--- Mathiesen, B., V. (2017). Smart Energy and Smart Energy Systems. Energy, 10.10.1016/j.energy.2017.05.123Search in Google Scholar

17. International Atomic Energy Agency. (1995). Wien Automatic System Planning (WASP) Package. Vienna: IAEA.Search in Google Scholar

18. E3MLab/ICCS. (n.d.). Primes Model 2013-2014. Athens: E3MLab.Search in Google Scholar

19. AS “Sadales tīkls” izpilddirektora Sanda Jansona intervija ar aģentūru “LETA”, 13.06.2019. Available at https://www.sadalestikls.lv/sandis-jansons-jau-sobrid-jasakvertet-mazo-elektribas-razotaju-ietekmi-uz-elektrotiklu-un-izmaksam/ [11.07.2019]Search in Google Scholar

20. Wie der Strom zu den Hamburgern kommt (n.d.). Available at https://www.stromnetz-hamburg.de/ueber-uns/auftrag/das-stromnetz/ [11.07.2019]Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics