1. bookVolume 55 (2018): Issue 6 (December 2018)
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

AB Initio Calculations of CUN@Graphene (0001) Nanostructures for Electrocatalytic Applications

Published Online: 25 Jan 2019
Volume & Issue: Volume 55 (2018) - Issue 6 (December 2018)
Page range: 30 - 34
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Substitution of fossil-based chemical processes by the combination of electrochemical reactions driven by sources of renewable energy and parallel use of H2O and CO2 to produce carbon and hydrogen, respectively, can serve as direct synthesis of bulk chemicals and fuels. We plan to design and develop a prototype of electrochemical reactor combining cathodic CO2-reduction to ethylene and anodic H2O oxidation to hydrogen peroxide. We perform ab initio calculations on the atomistic 2D graphene-based models with attached Cu atoms foreseen for dissociation of CO2 and H2O containing complexes, electronic properties of which are described taking into account elemental electrocatalytical reaction steps. The applicability of the model nanostructures for computer simulation on electrical conductivity of charged Cun/graphene (0001) surface is also reported.

Keywords

1. Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci., 5, 7050–7059.10.1039/c2ee21234jSearch in Google Scholar

2. Zhang, Y.-J., Sethuraman, V., Michalsky, R., & Pereson, A. A. (2014). Competition between CO reduction and H evolution on transition-metal electrocatalysts. ACS Catal., 4, 3742–3748.10.1021/cs5012298Search in Google Scholar

3. Reske, R., Mistry, H., Behafarid, F., Cuenya, B. R., Strasser, P. (2014). Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles. J. Am. Chem. Soc., 136, 6978–6986.10.1021/ja500328k24746172Search in Google Scholar

4. Zhu, W. Zhang, Y.-J., Zhang, H., Lv, H., Li, Q., Michalsky, R., Peterson, A. A., & Sun, S. (2014). Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc., 136, 16132–16135.10.1021/ja509509925380393Search in Google Scholar

5. Mistry, H., Varela, A. S., Kuehl, S., Strasser, P., & Cuenya, B. R. (2016). Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater., 1, 16009.10.1038/natrevmats.2016.9Search in Google Scholar

6. Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., & Yeo, B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal., 5, 2814–2821.10.1021/cs502128qSearch in Google Scholar

7. Mistry, H., Varela A. S., Bonifacio C. S., Zegkinoglou,I., Sinev, I., Choi, Y.-W., … Cuenya, B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun., 7, 12123.10.1038/ncomms12123493149727356485Search in Google Scholar

8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car., R., Cavazzoni, C., … Wentzcovitch, M. (2017). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matt., 29, 465901.Search in Google Scholar

9. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

10. Kresse, G. J., & Jouber, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758–1775.10.1103/PhysRevB.59.1758Search in Google Scholar

11. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188–5192.10.1103/PhysRevB.13.5188Search in Google Scholar

12. Otani, M., & Sugino, O. (2006). First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B, 73, 115407.10.1103/PhysRevB.73.115407Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo