Cite

1. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4(10), 686-689. DOI:10.1038/nphoton.2010.21410.1038/nphoton.2010.214Search in Google Scholar

2. http://www.idquantique.com/. QUANTIS: physical random number generator.Search in Google Scholar

3. Johnson, M. W. et al. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194-198. DOI:10.1038/nature1001210.1038/nature1001221562559Search in Google Scholar

4. Hammerer, K. (2010). Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82(2), 1041-1093. DOI:10.1103/RevModPhys.82.104110.1103/RevModPhys.82.1041Search in Google Scholar

5. Chalupczak, W., Godun, R. M., Pustelny, S., & Gawlik, W. (2012). Room temperature femtotesla radio-frequency atomic magnetometer. Applied Physics Letters, 100(24), 242401. DOI:10.1063/1.472901610.1063/1.4729016Search in Google Scholar

6. Hammerer, K., Polzik, E., & Cirac, J. (2005). Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Physical Review A, 72(5), 052313. DOI:10.1103/PhysRevA.72.05231310.1103/PhysRevA.72.052313Search in Google Scholar

7. Boyer, V., Marino, A. M., Pooser, R. C., & Lett, P. D. (2008). Entangled images from four-wave mixing. Science (N.Y.), 321(5888), 544–547. DOI:10.1126/science.115827510.1126/science.115827518556517Search in Google Scholar

8. Kozhekin, A., Molmer, K., & Polzik, E. S. (2000). Quantum memory for light. Physical Review A, 62(3), 1473. DOI:10.1103/PhysRevA.62.03380910.1103/PhysRevA.62.033809Search in Google Scholar

9. Porras, D., & Cirac, J. I. (2008). Collective generation of quantum states of light by entangled atoms. Physical Review A, 78(5), 1-14. DOI:10.1103/PhysRevA.78.05381610.1103/PhysRevA.78.053816Search in Google Scholar

10. Parniak, M., & Wasilewski, W. (2014). Direct observation of atomic diffusion in warm rubidium ensembles. Applied Physics B, 116(2), 415-421. DOI:10.1007/s00340-013-5712-y10.1007/s00340-013-5712-ySearch in Google Scholar

11. Chrapkiewicz, R., Wasilewski, W., & Radzewicz, C. (2014). How to measure diffusional decoherence in multimode rubidium vapor memories? Optics Communications, 317, 1-6. DOI:10.1016/j.optcom.2013.12.02010.1016/j.optcom.2013.12.020Search in Google Scholar

12. Acosta, V. M., Jarmola, A., Windes, D., Corsini, E., Ledbetter, M. P., Karaulanov, T., Auzinsh, M., Rangwala, S. A., Kimball, D. F. J., & Budker, D. (2010). Rubidium dimers in paraffin-coated cells. New Journal of Physics, 12(8), 83054. DOI:10.1088/1367-2630/12/8/08305410.1088/1367-2630/12/8/083054Search in Google Scholar

13. Chrapkiewicz, R., & Wasilewski, W. (2012). Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapours. Optics Express, 20(28), 29540–29551. DOI:10.1364/OE.20.02954010.1364/OE.20.029540Search in Google Scholar

14. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J., & Polzik, E. S. (2004). Experimental demonstration of quantum memory for light. Nature, 432(7016), 482-486. DOI:10.1038/nature0306410.1038/nature03064Search in Google Scholar

15. Krauter, H., Muschik, Ch. A., Jensen, K., Wasilewski, W., Petersen, J. M., Cirac, & J. I., Polzik, E. S. (2011). Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 107(8), 080503. DOI:10.1103/PhysRevLett.107.08050310.1103/PhysRevLett.107.080503Search in Google Scholar

16. Shuker, M., Firstenberg, O., Pugatch, R., Ron, A., & Davidson, N. (2008). Storing images in warm atomic vapor. Physical Review Letters, 100(22). DOI:10.1103/PhysRevLett.100.22360110.1103/PhysRevLett.100.223601Search in Google Scholar

17. Hosseini, M., Sparkes, B. M., Hétet, G., Longdell, J. J., Lam, P. K., & Buchler, B. C. (2009). Coherent optical pulse sequencer for quantum applications. Nature, 461(7261), 241-245. DOI:10.1038/nature0832510.1038/nature08325Search in Google Scholar

18. Matsko, A. B. et al. (2001). Slow, ultraslow, stored, and frozen light. Advances in atomic, molecular, and optical physics, 46, 191-242. DOI:10.1016/S1049-250X(01)80064-110.1016/S1049-250X(01)80064-1Search in Google Scholar

19. Fleischhauer, M. (2005). Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics,46(2), 633-673. DOI:10.1103/RevModPhys.77.63310.1103/RevModPhys.77.633Search in Google Scholar

20. Chrapkiewicz, R., & Wasilewski, W. (2010). Multimode spontaneous parametric down-conversion in a lossy medium. Journal of Modern Optics, 57(5), 345-355. DOI:10.1080/0950034100364258810.1080/09500341003642588Search in Google Scholar

21. Duan, L. M, Lukin, M. D., Cirac, J. I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 81(6862), 5788-418. DOI:10.1038/3510650010.1038/3510650011719796Search in Google Scholar

22. Scully, M. O., & Zubairy, M. S. (1997). Quantum Optics. Cambridge (UK): Cambridge University Press.10.1017/CBO9780511813993Search in Google Scholar

23. Raymer, M. G. (2004). Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering. Journal of Modern Optics, 51(12), 1739-1759, DOI:10.1080/0950034040823248810.1080/09500340408232488Search in Google Scholar

24. Steck, D. A. (2009). Rubidium 87 D Line Data. http://steck.us/alkalidata/Search in Google Scholar

25. Amuneal. Magnetic Shielding. Theory and Design. http://www.amuneal.com/.Search in Google Scholar

26. Corwin, K. L., Lu, Z. T., Hand, C. F., Epstein, R. J., & Wieman, C. E. (1998). Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Applied Optics, 37(15), 3295–3298. DOI:10.1364/AO.37.00329510.1364/AO.37.00329518273286Search in Google Scholar

27. Happer, W., Jau, Y.-Y., & Walker, T. (2010). Optically Pumped Atoms. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KgaA.10.1002/9783527629503Search in Google Scholar

28. Goldberg, E. A. (1981). Degaussing arrangement for maser surrounded by magnetic shielding. RCA Corporation. U.S. Patent no. 4286304. New York.Search in Google Scholar

29. Zibrov, A., Lukin, M., Hollberg, L., & Scully, M. (2002). Efficient frequency up-conversion in resonant coherent media. Physical Review A, 65(5), 051801. DOI:10.1103/PhysRevA.65.05180110.1103/PhysRevA.65.051801Search in Google Scholar

30. Sell, J. F., Gearba, M. A., DePaola, B. D., & Knize, R. J. (2014). Collimated blue and infrared beams generated by two-photon excitation in Rb vapor. Optics Letters, 39(3), 528. DOI:10.1364/OL.39.00052810.1364/OL.39.00052824487857Search in Google Scholar

31. Vernier, A., Franke-Arnold, S., Riis, E., & Arnold, A. S. (2010). Enhanced frequency up-conversion in Rb vapor. Optics Express, 18(16), 17020–6. DOI:10.1364/OE.18.01702010.1364/OE.18.01702020721090Search in Google Scholar

32. Willis, R., Becerra, F., Orozco, L., & Rolston, S. (2009). Four-wave mixing in the diamond configuration in an atomic vapor. Physical Review A, 79(3), 033814. DOI:10.1103/PhysRevA.79.03381410.1103/PhysRevA.79.033814Search in Google Scholar

33. Srivathsan, B., Gulati, G. K., Chng, B., Maslennikov, G., Matsukevich, D., & Kurtsiefer, C. (2013). Narrow-band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Physical Review Letters, 111(12), 123602. DOI:10.1103/PhysRevLett.111.12360210.1103/PhysRevLett.111.12360224093260Search in Google Scholar

34. Walker, G. et al. (2012). Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Physical Review Letters, 108(24), 243601. DOI:10.1103/PhysRevLett.108.243601.10.1103/PhysRevLett.108.24360123004270Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics