1. bookVolume 24 (2018): Issue 3 (December 2018)
Journal Details
License
Format
Journal
First Published
24 Dec 2009
Publication timeframe
3 times per year
Languages
English
access type Open Access

Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland

Published Online: 25 Jan 2019
Page range: 225 - 235
Received: 10 May 2018
Accepted: 05 Aug 2018
Journal Details
License
Format
Journal
First Published
24 Dec 2009
Publication timeframe
3 times per year
Languages
English

The present paper discusses studies related to the preparation of a hydrogeological model of groundwater flow and nitrate transport in an area where a precision farming system is applied. Components of water balance were determined using the UnSat Suite Plus software (HELP model), while the average infiltration rate calculated for the study area equalled 20 per cent. The Visual MODFLOW software was used for the purpose of modelling in the saturated zone. Hydrogeological parameters of the model layers, inclusive of hydraulic conductivity, were defined on the basis of results of column tests that were carried out under laboratory conditions (column experiment). Related to the dose of mineral nitrogen used in precision fertilisation (80 kg N/ha), scenarios of the spread of nitrates in the soil-water environment were worked out. The absolute residual mean error calculated for nitrate concentrations obtained from laboratory and modelling studies equalled 0.188 mg/L, the standard error of the estimate equalling 0.116 mg/L. Results obtained were shown graphically in the form of hydroisohypse maps and nitrate isolines. Conclusions were drawn regarding the possibility of using numerical modelling techniques in predicting transport and fate of nitrates from fertilisers applied in precision agriculture systems.

Keywords

Aljazzar, T. & Al-Qinna, M., 2016. Assessment of nitrate transport parameters using the advection-diffusion cell. Environmental Science and Pollution Research 23, 23145–23157.Search in Google Scholar

Almasri, M.N. & Kaluarachchi, J.J., 2007. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology 343, 211–229.Search in Google Scholar

ASTM D5084-00, 2001. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, West Conshohocken.Search in Google Scholar

Batu, V., 1998. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis. John Wiley & Sons, New York, 58 pp.Search in Google Scholar

Baum, R., Wojszczuk, K. & Wawrzynowicz, J., 2012. Miejsce i rola rolnictwa precyzyjnego w koncepcji zrównoważonego rozwoju gospodarstw rolnych [Place and role of precision agriculture at concept of sustainable development of farms]. Ekonomia i Środowisko 1, 71–83.Search in Google Scholar

Bieciński, P.A., 1960. Nowyj metod opredelenija koeffi-cienta wodootdaczi wodonosnych płastow [A new method for determining the storage coefficient of aquifers]. Gidrotehnika i Melioracija 6, 15–20.Search in Google Scholar

Bujakowski, F. & Falkowski, T., 2017. Wykorzystanie lotniczego skaningu laserowego do oceny warunków przepływu wód w osadach równi zalewowej [The use of airborne laser scanning in the assessment of groundwater flow conditions in floodplain deposits]. Przegląd Geologiczny 65, 443–449.Search in Google Scholar

Cesnulevicius, A., 2011. Method for evaluation water budget in small river catchments. [In:] Cygas, D. & Froehner, K.D. (Eds): Proceedings of the 8th International Conference on Environmental Engineering. Vilnius Gediminas Technical University, Vilnius, 538–542.Search in Google Scholar

Diamond, J. & Shanley, T., 2003. Infiltration rate assessment of some major soils. Irish Geography 36, 32–46.Search in Google Scholar

Duda, R., Witczak, S. & Żurek, A., 2011. Mapa wrażliwości wód podziemnych Polski na zanieczyszczenie 1:500 000. Metodyka i objaśnienia tekstowe [Map of groundwater vurnerability for pollution in Poland. Scale 1:500,000. Methodology and explanation text]. Wyd. AGH, Kraków, 91–97.Search in Google Scholar

Falkowska, E. & Falkowski, T., 2015. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surface Processes and Landforms 40, 876–887.Search in Google Scholar

Frind, E., Duynisveld, W., Strebel, O. & Boettcher, O., 1990. Modeling of multicomponent transport with microbial transformation in ground water. The Fuhrberg case. Water Resources Research 26, 1707–1719.Search in Google Scholar

Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A. & Osiński, P., 2016. Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water 8, 470.Search in Google Scholar

Herbert, M. & Kovar, K. (Eds), 1998. Groundwater Quality: Remediation and Protection. IAHS, Wallingford, 11–18.Search in Google Scholar

Koda, E., 2012. Influence of Vertical Barrier Surrounding Old Sanitary Landfill on Eliminating Transport of Pollutants on the Basis of Numerical Modeling and Monitoring Results. Polish Journal of Environmental Studies 21, 929–935.Search in Google Scholar

Koda, E., Sieczka, A. & Osiński, P., 2016. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253.Search in Google Scholar

Kondracki, J., 2002. Geografia regionalna Polski [Regional geography of Poland]. Wydawnictwo Naukowe PWN, Warszawa, 188–194.Search in Google Scholar

Kozlovsky, E.A. (Ed.), 1988. Geology and the Environment. Vol. I, Water Management and the Geoenvironment. UNESCO Paris, UNEP Nairobi, 148–155.Search in Google Scholar

Macioszczyk, A. (Ed.), 2006. Podstawy hydrogeologii stosowanej [Introduction to applied hydrogeology]. Wydawnictwo Naukowe PWN, Warszawa, 184 pp.Search in Google Scholar

Marciniak, M., Małoszewski, P. & Okońska, M., 2006. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego [The influence of column experiment scale effect on the tracer migration parameter identification by the methods of analytical solutions and numerical modelling]. Geologos 10, 167–187.Search in Google Scholar

Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G. & Linton, B., 2002. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton Inquiry. Journal of Toxicology and Environmental Health, Part A 65, 1–142.Search in Google Scholar

Rozporządzenie Ministra Środowiska z dnia 21 grudnia 2015 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych [Regulation of the Minister of Environment dated 21 December 2015 on the criteria and method of evaluating the underground water condition], 2016. Dz. U. 2016, poz. 85.Search in Google Scholar

Sarnacka, Z., 1976. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz Piaseczno (560) [Explanations for the Detailed Geological Map of Poland 1:50,000, Piaseczno sheet (560)]. Wyd. Geologiczne, Warszawa, 41–42.Search in Google Scholar

Saxton, K.E. & Willey P.H., 2006. The SPAW model for agricultural field and pond hydrologic simulation. [In:] Singh, V.P. & Frevert, D.K. (Eds): Watershed models. CRC Press, Boca Raton, 401–435.Search in Google Scholar

Sieczka, A. & Koda, E., 2016a. Kinetic and equilibrium studies of sorption of ammonium in the soil-water environment in agricultural areas of Central Poland. Applied Sciences 6, 269.Search in Google Scholar

Sieczka, A. & Koda, E., 2016b. Identification of Nitrogen Compounds Sorption Parameters in the Soil-Water Environment of a Column Experiment. Ochrona Środowiska 38, 29–34.Search in Google Scholar

Sieczka, A., Bujakowski, F., Falkowski, T. & Koda, E., 2018. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 10, 399.Search in Google Scholar

Toride, N., Leij, F.J. & van Genuchten, M.T., 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. Research Report No. 137. USDA-ARS U.S. Salinity Laboratory, Riverside.Search in Google Scholar

Uffink, G.J.M., 2003. Determination of Denitrification Parameters in Deep Groundwater. A Pilot Study for Several Pumping Stations in the Netherlands. RIVM Report 703717011. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven.Search in Google Scholar

Witczak, W., Kania, J. & Kmiecik, E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania [Guidebook on selected physical and chemical indicators of groundwater contamination and methods of their determination]. Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska, Warszawa, 11–12.Search in Google Scholar

Zhu, C. & Anderson, G., 2002. Environmental Applications of Geochemical Modeling. Cambridge University Press, Cambridge, 136–137.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo