1. bookVolume 64 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
1804-1213
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
access type Open Access

Mechanical and corrosion properties of iron-mangan materials sintered in the presence of plasma

Published Online: 04 May 2020
Page range: 1 - 10
Journal Details
License
Format
Journal
eISSN
1804-1213
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
Abstract

The current trend in development of new metallic materials for certain types of implants is turning away from permanent, biologically inert materials to the use of biodegradable materials. Fe–Mn alloys represent high perspective material for development of new generation of temporary and biodegradable implants. The aim of this work was to study mechanical and corrosion characteristics of powder samples containing 25, 30 and 35 wt % of Mn which are fabricated by pressing, sintering, and additional spark plasma sintering. The influence of preparation method (pressing and sintering) to microstructure, phased composition and corrosion behavior of prepared alloys was studied.

1. Chen F.; Liu X.: Progress in Polymer Science Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science2016, 53 (1), 86–168.10.1016/j.progpolymsci.2015.02.004480805927022202Search in Google Scholar

2. Oriňaková R.; Gorejová R.; Králová Orságová Z.; Oriňak A.; Maskaľová I.; Kupková M.; Baláž M.; Hrubovčáková M.; Sopčák T.; Zubrik A.; Oriňak M.: Evaluation of Mechanical Properties and Hemocompatibility of Open Cell Iron Foams with Polyethylene Glycol Coating. Applied Surface Sciience2019, 144 634.10.1016/j.apsusc.2019.144634Search in Google Scholar

3. Navarro M.; Michiardi A.; Castan O.; Planell J. A. Biomaterials in orthopaedics. Journal of the Royal Society Interface2008, 5, 1137–1158.10.1098/rsif.2008.0151270604718667387Search in Google Scholar

4. Datta L. P.; Manchineella S.; Govindaraju T.: Biomolecules-derived Biomaterials. Biomaterials2019, 119 633.10.1016/j.biomaterials.2019.11963331831221Search in Google Scholar

5. Oriňakova R.; Gorejová R.; Macko J.; Oriňak A.; Kupková M.; Hrubovčakova M.; Ševc J.; Smith R.M.: Evaluation of in vitro biocompatibility of open cell iron structures with PEG coating. Applied Surface Science2019, 475, 515–518.Search in Google Scholar

6. Park, J.; Lakes, R. S. Biomaterials, 3rd ed.; Springer-Verlag New York: New York, 2007.Search in Google Scholar

7. Binyamin, G.; Shafi, B.; Mery, C.: Biomaterials: A primer for surgeons. Chitin-Chitosan: Myriad Functionalities in Science and Technology; 2006; 276–283.10.1053/j.sempedsurg.2006.07.00717055958Search in Google Scholar

8. Nawrat, Z.: Review of Research in Cardiovascular Devices. Review of Handbook of Polymer Applications in Medicine and Medical Devices; 2009; 145–189.10.1016/B978-0-323-22805-3.00008-6Search in Google Scholar

9. Tabraiz S.; Ansari A.Q.; Urooj S.; Aldobali M.: A Review based on Coronary Biodegradable and Bioabsorbable Stents for Artery Disease Coronary. Procedia Computer Science2019, 152, 354–359.Search in Google Scholar

10. Prajapati S.K.; Jain A.; Jain S.; Tirth B.; College P. Bio-degradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal2019, 109 191.10.1016/j.eurpolymj.2019.08.018Search in Google Scholar

11. Jiang T.; Duan Q.; Zhu J.; Liu L.; Yu L.: Starch-based Biodegradable Materials: Challenges and Opportunities. Advanced Industrial Engeneering and Polymer Research2019.10.1016/j.aiepr.2019.11.003Search in Google Scholar

12. Linsley C.; Li X.; North S.M.E.; Guan Z.; Pan S.; Linsley C.; Li X.: Manufacturing and Characterization of as Potential Biodegradable Material. Procedia Manufacturing2019, 34, 247–251.Search in Google Scholar

13. Zheng Y. F.; Gu X. N.; Witte F.: Biodegradable metals. Material Science and Engeneering R2014, 77, 1–34.Search in Google Scholar

14. Hermawan H.; Purnama A.; Dube D.; Couet J.; Mantovani D.: Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomaterialia2010, 6, 1852–1860.Search in Google Scholar

15. Shreyas P.; Panda B.; Kumar R.: Materials Today: Proceedings Mechanical properties and microstructure of 316L- galvanized steel weld. Materials Today: Proceeding2019 5–12.10.1016/j.matpr.2019.05.418Search in Google Scholar

16. Dehghan-Manshadi A.; St John D.H.; Dargusch M.S.: Tensile Properties and Fracture Behaviour of Biodegradable Iron-Manganese Scaffolds Produced by Powder Sintering. Materials2019,12, 157210.3390/ma12101572656615631091657Search in Google Scholar

17. Dargusch M.S.; Dehghan-Manshadi A.; Shahbazi M.; Venezuela J.; Tran X.; Song J.; Liu N.; Xu C.; Ye Q. S.; Wen C. E.: Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. Acs Biomaterials Science & Engineering2019, 5, 1686-170210.1021/acsbiomaterials.8b0149733405546Search in Google Scholar

18. Pustov, Y.A.; Zhukova, Y.S.; Malikova, P.E.; Prokoshkin, S.D.; Dubinskii, S.M.: Structure and Corrosion-Electro-chemical Behavior of Bioresorbable Alloys Based on the Fe-Mn System. Prot. Met. Phys. Chem. Surf.2018, 54, 469-476.Search in Google Scholar

19. Hong D.; Chou D. T.; Velikokhatnyi O. I.; Roy A.; Lee B.; Swink I.; Issaev I.; Kuhn H.A.; Kumta P.N.: Binder-Jetting 3D Printing and Alloy Development of New Biodegradable Fe–Mn–Ca/Mg Alloys. Acta Biomaterialia2016, 45, 375-386.Search in Google Scholar

20. Hermawan H.; Dubé D.; Mantovani D.: Degradable Metallic Biomaterials: Design and Development of Fe–Mn Alloys for Stents. J Biomed Mater Res A2010, 93A, 1-11.10.1002/jbm.a.3222419437432Search in Google Scholar

21. Donik Č.; Kocijan A.; Paulin I.; Hočevar M.; Gregorčič P.; Godec M.: Improved Biodegradability of Fe–Mn Alloy After Modification of Surface Chemistry and Topography by a Laser Ablation. Applied Surface Science2018, 453, 383-393.Search in Google Scholar

22. Shuai C. Li S.; Peng S.; Feng P.; Lai Y.; Gao C.: Biodegradable Metallic Bone Implants. Mater Chem Front2019, 3, 544-562.Search in Google Scholar

23. Drynda A.; Hassel T.; Bach F. W.; Peuster M.: In Vitro and In Vivo Corrosion Properties of New Iron–Manganese Alloys Designed for Cardiovascular Applications. J Bio Mat Res B2014, 103, 649-660.Search in Google Scholar

24. Campos N.; Gierl-mayer C.; Oro R.; Torralba M.; Danninger H.: New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior. Metallurgical and Materials Transaction2015, 46, 1349–1359.Search in Google Scholar

25. Berkowitz B.; Ewing R.P.: Percolation Theory and Network Modelling Application in Soil Physics. Surveys in Geophysics1998, 19, 23-72.Search in Google Scholar

26. Balberg I.: Recent Developments in Continuum Percolation, Philosophical Magazine B1987, 56, 991-1003.10.1080/13642818708215336Search in Google Scholar

27. Kupková M.; Hrubovčáková M.; Zeleňák A.; Sułowski M.; Ciaś A.; Oriňáková R.; Morovská Turoňová A.; Žáková K.; Kupka, M.: Dimensional Changes, Microstructure, Microhardness Distributions And Corrosion Properties Of Iron And Iron-Manganese Sintered Materials. Archives of Metallurgy and Materials2015, 60 (2), 639–642.10.1515/amm-2015-0185Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo