Cite

1. Frigerio, E., et al., Metal sensitivity in patients with orthopaedic implants: a prospective study. Contact Dermatitis 2011, 64 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 273-279.Search in Google Scholar

2. Hashitani, S., et al., Allergy to metal caused by materials used for intermaxillary fi xation: Case report. British Journal of Oral and Maxillofacial Surgery 2008, 46 (4), 315-316.10.1016/j.bjoms.2007.06.003Search in Google Scholar

3. Egusa, H., et al., Suspected association of an allergic reaction with titanium dental implants: A clinical report. The Journal of Prosthetic Dentistry 2008, 100 (5), 344-347.10.1016/S0022-3913(08)60233-4Search in Google Scholar

4. Manhabosco, T. M., et al., Cell response and corrosion behavior of electrodeposited diamond-like carbon fi lms on nanostructured titanium. Corrosion Science 2013, 66, 169-176.10.1016/j.corsci.2012.09.015Search in Google Scholar

5. Yetim, A. F., et al., Corrosion behaviour of Ti DLC deposition on prenitrided 316L stainless steel and Ti-6Al-4V alloy. Corros. Eng., Sci. Technol. 2011, 46 (4), 439-444.Search in Google Scholar

6. Nitta, Y., et al., Development of novel DLC fi lm using plasma technique for medical material. Journal of Photopolymer Science and Technology 2010, 23 (2), 245-250.10.2494/photopolymer.23.245Search in Google Scholar

7. Wang, L., et al., Corrosion and tribological properties and impact fatigue behaviors of TiN- and DLC-coated stainless steels in a simulated body fluid environment. Surface and Coatings Technology 2010, 205 (5), 1599-1605.10.1016/j.surfcoat.2010.07.111Search in Google Scholar

8. Azzi, M., et al., Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 2009, 267 (Pt. 2), 860-866.10.1016/j.wear.2009.02.006Search in Google Scholar

9. Vitu, T., et al., Structure and tribology of biocompatible Ti- C:H coatings. Surface and Coatings Technology 2008, 202 (22-23), 5790-5793.10.1016/j.surfcoat.2008.06.040Search in Google Scholar

10. Cristache, C. M., et al., Zirconia and Its Biomedical Applications. Metal Int 2011, 16 (7), 18-23.Search in Google Scholar

11. Hisbergues, M., et al., Zirconia: Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater 2009, 88 (2), 519-29.10.1002/jbm.b.3114718561291Search in Google Scholar

12. Liu, X. Y., et al., Bioactivity and cytocompatibility of zirconia (ZrO2) fi lms fabricated by cathodic arc deposition. Biomaterials 2006, 27 (21), 3904-3911.10.1016/j.biomaterials.2006.03.00716564082Search in Google Scholar

13. Sandhyarani, M., et al., Surface morphology, corrosion resistance and in vitro bioactivity of P containing ZrO2 fi lms formed on Zr by plasma electrolytic oxidation. Journal of Alloys and Compounds 2013, 553, 324-332.10.1016/j.jallcom.2012.11.147Search in Google Scholar

14. Tsutsumi, Y., et al., Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater 2010, 6 (10), 4161-6.10.1016/j.actbio.2010.05.010Search in Google Scholar

15. Yen, S. K., et al., Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy. Materials Science and Engineering: C 2006, 26 (1), 65-77.10.1016/j.msec.2005.06.050Search in Google Scholar

16. Uchida, M., et al., Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials (UK) 2002, 23 (1), 313-317.10.1016/S0142-9612(01)00110-7Search in Google Scholar

17. Oliveira, N. T. C.; Guastaldi, A. C., Electrochemical behavior of Ti-Mo alloys applied as biomaterial. Corrosion Science 2008, 50 (4), 938-945.10.1016/j.corsci.2007.09.009Search in Google Scholar

18. Raman, V., et al., Electrochemical impedance spectroscopic characterization of passive fi lm formed over beta Ti-29Nb-13Ta-4.6Zr alloy. Electrochem. Commun. 2006, 8 (8), 1309-1314.Search in Google Scholar

19. Shukla, A. K., et al., Properties of passive fi lm formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions. Intermetallics. Vol. 13, no. 6, pp. 631-637. June 2005 2005.10.1016/j.intermet.2004.10.001Search in Google Scholar

20. Barsoukov, E.; MacDonald, R., Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition. 2005; p 608 pp.10.1002/0471716243Search in Google Scholar

21. Lasia, A., Modern Aspects of Electrochemistry. In Modeling of Impedance of Porous Electrodes [Online] Schlesinger, M., Ed. 2009.10.1007/978-0-387-49582-8_3Search in Google Scholar

22. Jurczakowski, R., et al., Impedance of porous Au based electrodes. Journal of Electroanalytical Chemistry 2004, 572 (2), 355-366.10.1016/j.jelechem.2004.01.008Search in Google Scholar

23. Jurczakowski, R., et al., Impedance of porous gold electrodes in the presence of electroactive species. Journal of Electroanalytical Chemistry 2005, 582 (1-2), 85-96.10.1016/j.jelechem.2005.02.013Search in Google Scholar

24. Hitz, C.; Lasia, A., Experimental study and modeling of impedance of the her on porous Ni electrodes. Journal of Electroanalytical Chemistry 2001, 500 (1-2), 213-222.10.1016/S0022-0728(00)00317-XSearch in Google Scholar

25. Nurk, G., et al., Electrochemical properties of diamond-like carbon electrodes prepared by the pulsed laser deposition method. J. Solid State Electrochem. 2003, 7 (7), 421-434.Search in Google Scholar

26. Barriga, J., et al., Tribological performance of titanium doped and pure DLC coatings combined with a synthetic bio-lubricant. Wear 2006, 261 (1), 9-14.10.1016/j.wear.2005.09.004Search in Google Scholar

27. Dearnaley, G.; Arps, J. H., Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surface and Coatings Technology 2005, 200 (7), 2518-2524.10.1016/j.surfcoat.2005.07.077Search in Google Scholar

28. Dorner, A., et al., Diamond-like carbon-coated Ti6Al4V: infl uence of the coating thickness on the structure and the abrasive wear resistance. Wear 2001, 249 (5-6), 489-497.10.1016/S0043-1648(01)00587-7Search in Google Scholar

29. NIST X-ray Photoelectron Spectroscopy Database, Version 4.0; http://srdata.nist.gov/xps2. National Institute of Standards and Technology, Gaithersburg: 2008.Search in Google Scholar

30. Liu, C., et al., EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science 2001, 43 (10), 1953-1961.10.1016/S0010-938X(00)00188-8Search in Google Scholar

31. Liu, E.; Kwek, H. W., Electrochemical performance of diamond-like carbon thin fi lms. Thin Solid Films 2008, 516 (16), 5201-5205.10.1016/j.tsf.2007.07.089Search in Google Scholar

32. Joska, L.; Fojt, J., Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fl uoride ions. Journal of Materials Science: Materials in Medicine 2009.10.1007/s10856-009-3930-y19921403Search in Google Scholar

33. D.J, B., 2.27 - Corrosion in Body Fluids. In Shreir‘s Corrosion, Editor-in-Chief: Tony, J. A. R., Ed. Elsevier: Oxford, 2010; pp 1308-1322. Search in Google Scholar

eISSN:
1804-1213
ISSN:
0452-599X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass