1. bookVolume 22 (2019): Issue 1 (December 2019)
Journal Details
License
Format
Journal
eISSN
1647-659X
First Published
01 Mar 2016
Publication timeframe
3 times per year
Languages
English
access type Open Access

The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics

Published Online: 03 Mar 2020
Volume & Issue: Volume 22 (2019) - Issue 1 (December 2019)
Page range: 1 - 53
Journal Details
License
Format
Journal
eISSN
1647-659X
First Published
01 Mar 2016
Publication timeframe
3 times per year
Languages
English
Abstract

According to Kant, the axioms of intuition, i.e. space and time, must provide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjectivity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless intuition comes into play in a fundamentally different way to that which Kant had foreseen: in the form of a formal or “categorical” yet not sensible intuition. We show further that the statement that our space is mathematically three-dimensional and locally Euclidean by no means follows from a supposed a priori nature of the sensible or subjective space as Kant claimed. In fact, the three-dimensional space can bear many different geometrical and topological structures, as particularly the mathematical results of Milnor, Smale, Thurston and Donaldson demonstrated. On the other hand, it has been stressed that even the phenomenological or perceptual space, and especially the visual system, carries a very rich geometrical organization whose structure is essentially non-Euclidean. Finally, we argue that in order to grasp the meaning of abstract geometric objects, as n-dimensional spaces, connections on a manifold, fiber spaces, module spaces, knotted spaces and so forth, where sensible intuition is essentially lacking and where therefore another type of mathematical idealization intervenes, we need to develop a new form of intuition.

Keywords

Angel, R.B. (1974), “The Geometry of Visibles”, Noûs, 8 (2), 87–117.10.2307/2214780Search in Google Scholar

Atiyah, M. (1979), Geometry of Yang-Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.Search in Google Scholar

Atiyah, M. (1987), “On the work of Simon Donaldson”, pp. 3–6 in Proceedings of the International Congress of Mathematicians (Berkeley, CA, 3–11 August 1986), vol. 2. Edited by A. Gleason. American Mathematical Society, providence, RI.Search in Google Scholar

Atiyah, M. (1988), “Topological quantum field theories”, Publications Mathématiques de l’IHÉS, 68(1), 175–186.10.1007/BF02698547Search in Google Scholar

Atiyah, M. (1988), “New invariants of three and four manifolds”, in The Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math., 48, Amer. Math. Soc., 285–299.10.1090/pspum/048/974342Search in Google Scholar

Atiyah, M. (1990), The geometry and physics of knots, Lezioni Lincee, Cambridge University Press.10.1017/CBO9780511623868Search in Google Scholar

Atiyah, M. (1997), “Geometry and physics: Where are we going?”, in Andersen et al. (eds.), Geometry and physics, Proceedings, Lecture Notes in Pure and Applied Mathematics, 184, Dekker, New York, 1–7.Search in Google Scholar

Atiyah, M. Atiyah, M. et al. (1990), “Responses to ‘Theoretical mathematics’: toward a cultural synthesis of mathematics and theoretical physics”, edited by A. Jaffe and F. Quinn, Bulletin of the American Mathematical Society, 30 (2).Search in Google Scholar

Baez, J. and J.P. Muniain (1994), Gauge Theories, Knot and Gravity, Series on Knots and Everything – Vol. 4, World Scientific, Singapore.10.1142/2324Search in Google Scholar

Becker, O. (1930), “Die apriorische Struktur des Anschauungsraum”, Philosophischer Anzeiger, 4, 129–162.Search in Google Scholar

Becker, O. (1973), Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene, Max Niemeyer Verlag, Tübingen.10.1515/9783111534626Search in Google Scholar

Benacerraf, P. and H. Putnam (1987), Philosophy of Mathematics. Selected readings, Cambridge University Press, New York.Search in Google Scholar

Bennequin, D. (2001), “Invariants contemporains”, in Panoramas et Synthèses, Société Mathématique de France, Paris, 11, 131–159.Search in Google Scholar

Boi, L. (1989), “Objectivation et idéalisation, ou des rapports entre géométrie et physique”, Fundamenta Scientiae, 10 (1), 85–114.Search in Google Scholar

Boi, L. (1992), “The ‘Revolution’ in the Geometrical Vision of Space in the Nineteenth Century, and the Hermeneutical Epistemology of Mathematics”, in Revolutions in Mathematics, D. Gillies (ed.), Oxford University Press, Oxford, 183–208.Search in Google Scholar

Boi, L. (1993), “Mannigfaltigkeit und Gruppenbegriff. Zu den Veränderungen der Geometrie im 19. Jahrhundert”, Mathematische Semesterberichte, 25, 10–35.Search in Google Scholar

Boi, L. (1995a), Le problème mathématique de l’espace. Une quête de l’intelligible, préface de R. Thom, Springer-Verlag, Heidelberg/Berlin.Search in Google Scholar

Boi, L. (1995b), Boi, L., “Conception ‘dynamique’ en géométrie, idéalisation et rôle de l’intuition”, Theoria, 10(22), 145–161.Search in Google Scholar

Boi, L. (1996), “La conception qualitative des mathématiques et le statut épistémologique du concept de groupe”, in Henri Poincaré: Science et Philosophie, G. Heinzmann et al. (eds.), A. Blanchard/Akademie Verlag, Paris/Berlin, 425–449.Search in Google Scholar

Boi, L. (1997), Boi, L., “La Géométrie: clef du reel? Pensée de l’espace et philosophie des mathématique”, Philosophiques, 24 (2), 389–430.Search in Google Scholar

Boi, L. (2001), “Sur la nature des objets mathématiques et les relations entre géométrie et physique”, in De la science à la philosophie. Hommage à Jean Largeault, M. Espinoza (ed.), L’Harmattan, Paris, 197–246.Search in Google Scholar

Boi, L. (2003), “Philosophy of space-time”, in Cambridge History of Philosophy 1870–1945, T. Baldwin (ed.), Cambridge University Press, Cambridge, 207–218.Search in Google Scholar

Boi, L. (2004a), “Theories of space-time in modern physics”, Synthese, 139 (3), 429–489.10.1023/B:SYNT.0000024888.19304.0fSearch in Google Scholar

Boi, L. (2004b), “Geometrical and topological foundations of theoretical physics: from gauge theories to string program”, International Journal of Mathematics and Mathematical Sciences, 34, 1777–1836.10.1155/S0161171204304400Search in Google Scholar

Boi, L. (2004c), “Questions regarding Husserlian geometry and phenomenology. A study of the concept of manifold and spatial perception”, Husserl Studies, 20 (3), 207–267.10.1007/s10743-004-2061-zSearch in Google Scholar

Boi, L. (2006a), “Nouvelles dimensions mathématiques et épistémologiques du concept d’espace en physique relativiste et quantique”, in L’espace physique, entre mathématique et philosophie, M. Lachièze-Rey (ed.), EDP Sciences, Paris, 101–133.10.1051/978-2-7598-0130-5-008Search in Google Scholar

Boi, L. (2006b), “The Aleph of Space. On some extensions of geometrical and topological concepts in the twentieth-century mathematics: from surfaces and manifolds to knots and links”, in What is Geometry?, G. Sica (ed.), Polimetrica International Scientific Publisher, Milan, 79–152.Search in Google Scholar

Boi, L. (2006c), “Mathematical Knot Theory”, in Encyclopedia of Mathematical Physics, J.-P. Françoise, G. Naber, T.S. Tsun (eds.), Elsevier, Oxford, 399–406.10.1016/B0-12-512666-2/00515-0Search in Google Scholar

Boi, L. (2009a), “Geometria e dinamica dello spazio-tempo nelle teorie fisiche recenti. Su alcuni problemi concettuali della fisica contemporanea”, Giornale di Fisica, 50 (1), 1–10.Search in Google Scholar

Boi, L. (2009b), “Ideas of geometrization, geometric invariants of low-dimensional manifolds, and topological quantum field theories”, International Journal of Geometric Methods in Modern Physics, 6 (5), 701–757.10.1142/S0219887809003783Search in Google Scholar

Boi, L. (2009c), “Images et diagramme des objets et de leurs transformations dans l’espace”, Visibles, 5, 45–78.Search in Google Scholar

Boi, L. (2011a), The Quantum Vacuum. A Scientific and Philosophical Concept, from Electrodynamics to String Theory, and the Geometry of the Microscopic World, The Johns Hopkins University Press, Baltimore.Search in Google Scholar

Boi, L. (2011b), Morphologie de l’invisible. Transformations d’objets, formes de l’espace, singularités phénoménales et pensée diagrammatique, Presses Universitaires de Limoges.Search in Google Scholar

Boi, L. (2012a), “Fondamenti geometrici e problemi filosofici dello spaziotempo. Dalla relatività generale alla teoria delle supercorde”, Isonomia - Rivista di Filosofia, 1, 1–37.Search in Google Scholar

Boi, L. (2016), “Imagination and Visualization of Geometrical and Topological Forms in Space. On Some Formal, Philosophical and Pictorial Aspects of Mathematics”, in Philosophy of Science in the 21stCentury – Challenges and Tasks, O. Pombo and G. Santos (eds.), Documenta 9, CFCUL Lisbon, 163–221.Search in Google Scholar

Bombieri, E. (2000), “Problems of the Millenium: The Riemann Hypothesis”, CLAY.Search in Google Scholar

Brouwer, L.E.J. (1912), “Intuitionism and Formalism”, Bulletin of the American Mathematical Society, 20, 81–96.10.1090/S0002-9904-1913-02440-6Search in Google Scholar

Brouwer, L.E.J. (1975), Collected Works, Vol. 1: Philosophy and Foundations of Mathematics, North-Holland, Amsterdam.Search in Google Scholar

Carter, J.S. (1995), How Surfaces Intersect in Space. An Introduction to Topology, Series on Knots and Everything, Vol. 2., World Scientific, Singapore.10.1142/2571Search in Google Scholar

Cassirer, E. (1910), Substanzbegriff und Funktionbegriff, Springer, Berlin.Search in Google Scholar

Cavaillès, J. (1962), Philosophie mathématique, Hermann, Paris.Search in Google Scholar

Châtelet, G. (1988), “Intuition géométrique et intuition physique”, CISM, Courses and Lectures, No. 305, Springer-Verlag, Berlin Heidelberg, 100–114.Search in Google Scholar

Clifford, W.K. (1879), “The Philosophy of Pure Sciences”, in: Lectures and Essays, Vol. I, Macmillan, London, 254–340.Search in Google Scholar

Conrey, B. (2003), “The Riemann Hypothesis”, Notices of AMS, March, 341–353.Search in Google Scholar

Coxeter, H.S.M. (1998), Non-Euclidean Geometry (sixth ed.), The Mathematical Association of America.10.5948/9781614445166Search in Google Scholar

De Jong, W.R. (1997), “Kant’s Theory of Geometrical Reasoning and the Analytic-Synthetic Distinction. On Hintikka’s Interpretation of Kant’s Philosophy of Mathematics”, Studies in History and Philosophy of Science, 28 (1), 141–166.10.1016/S0039-3681(96)00006-4Search in Google Scholar

Desanti, J.-T. (1983), Les idéalités mathématiques, Seuil, Paris.Search in Google Scholar

Donaldson, S.K. (1983), “An application of gauge theory to the topology of 4-manifolds”, Journal of Differential Geometry, 18, 279–315.10.4310/jdg/1214437665Search in Google Scholar

Eilan, N., McCarthy, R. and B. Brewer (Eds.) (1993), Spatial Representation. Problems in Philosophy and Psychology, Oxford University Press, Oxford.Search in Google Scholar

Feist, R. (2004), Husserl and the Sciences, University of Ottawa Press.Search in Google Scholar

Feist, R. (2002), “Weyl’s Appropriation of Husserl’s and Poincaré’s Thought”, Synthese, 132 (3), 273–301.10.1023/A:1020370823738Search in Google Scholar

Freedman M. and Quinn F. (1990), Topology of 4-Manifolds, Princeton University Press, Princeton.10.1515/9781400861064Search in Google Scholar

Friedman, M. (2013), Kant’s Construction of Nature: A Reading of the “Metaphysical Foundations of Natural Sciences”, Cambridge University Press.10.1017/CBO9781139014083Search in Google Scholar

Friedman, M. (1992), Kant and the Exact Sciences, Harvard University Press.Search in Google Scholar

Friedman, M. (1985), “Kant’s theory of geometry”, The Philosophical Review, Vol. XCIV, No. 4, 455–506.10.2307/2185244Search in Google Scholar

Heijenoort, J. van, (ed.) (1967), From Frege to Gödel, Harvard University Press, Cambridge, MA.Search in Google Scholar

Gibson, J.J. (1979), The Ecological Approach to Visual Perception, Houghton Mifflin, Boston.Search in Google Scholar

Gödel, K. (1986), Collected Works, Vol. 1, edited by S. Feferman et al., Oxford University Press, Oxford.Search in Google Scholar

Gonseth, F. (1974), Les Mathématiques et la Réalité, A. Blanchard, Paris.10.1111/j.1746-8361.1975.tb00645.xSearch in Google Scholar

Goodman, N.D. (1979, “Mathematics as an objective science”, American Mathematical Monthly, 86 (7), 540–551.10.1080/00029890.1979.11994851Search in Google Scholar

Gromov, M. (2000), “Spaces and Questions”, in: Visions in Mathematics. GAFA 2000, special volume, N. Alon et al. (Eds.), Birkhäuser, Basel, 118–161.Search in Google Scholar

Gordon, I.E. (1997), Theories of Visual Perception, John Wiley & Sons, Chichester.Search in Google Scholar

Hadamard, J. (1945), The psychology of invention in the mathematical field, Princeton University Press, Princeton.Search in Google Scholar

Helmholtz, H. (1997), Epistemological Writings, edited by R.S. Cohen and Y. Elkana, Boston Studies in the Philosophy of Science, Vol. 37, D. Reidel, Dordrecht.Search in Google Scholar

Hilbert, D. (1899), Die Grundlagen der Geometrie, Teubner, Leipzig.Search in Google Scholar

Hilbert D., Cohn-Vossen S. (1932), Anschauliche Geometrie, Springer, Berlin.10.1007/978-3-662-36685-1Search in Google Scholar

Hintikka, J. (1996), La philosophie des mathématiques chez Kant, PUF, Paris.Search in Google Scholar

Husserl, E. (1921), Logische Untersuchungen VI, zweiter Band: Elemente einer Phänomenologischen Aufklärung der Erkenntnis, Max Niemeyer, Halle.Search in Google Scholar

Husserl, E. (1973), Ding und Raum, Vorlesungen 1907, edited by U. Claesges, Martinus Nijhoff, The Hague.Search in Google Scholar

Husserl, E. (1983), Husserliana - Collected Papers, Vol. XXI: Studien zur Arithmetik und Geometrie, Edited by I. Strohmeyer, Martinus Nijhoff Publishers, The Hague.10.1007/978-94-009-6773-1Search in Google Scholar

Kant, I., Kritik der reinen Vernunft (1781–1787), new ed.: Meiner, Hambourg, 1990.Search in Google Scholar

Kant, I., Kritik der reinen Vernunft (1786), Metaphysische Anfangsgründe der Naturwissenschaft, J.F. Hartknoch, Riga.Search in Google Scholar

Kant, I., Kritik der reinen Vernunft (1980), Opus Postumum, translated and presented by F. Marty, PUF, Paris.Search in Google Scholar

Kauffman, L. (1988), “New invariants in knot theory”, American Mathematical Monthly, 95, 195–242.10.1080/00029890.1988.11971990Search in Google Scholar

Kauffman, L. (1987), On Knots, Princeton University Press, Princeton.Search in Google Scholar

Kitcher, P. (1984), The nature of mathematical knowledge, Oxford University Press, New York.10.1093/0195035410.001.0001Search in Google Scholar

Kitcher, P. (1988), “Mathematical Progress”, Revue Internationale de Philosophie, special issue on “Philosophy of Mathematics”, P. Kitcher (ed.), 42 (167), 518–540.Search in Google Scholar

Klein, F. (1979), Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (first ed., 1927), Springer-Verlag, Berlin Heidelberg.10.1007/978-3-642-67230-9Search in Google Scholar

Kreisel, G. (1965), “Mathematical Logic”, in Lectures in Modern Mathematics, Wiley, New York, 95–195.Search in Google Scholar

Kronheimer P. and Mrowka T. (1994), “Recurrence relations and asymptotic for four-manifolds”, Bull. Amer. Math. Soc., 30, 215–221.10.1090/S0273-0979-1994-00492-6Search in Google Scholar

Lakatos, I. (1978), Mathematics, science and epistemology, Philosophical Papers, Vol. 2, Cambridge University Press, Cambridge.Search in Google Scholar

Largeault, J. (1990), “Formalisme et intuitionnisme en philosophie des mathématiques”, Revue philosophique, 3 (1990), 521–546.Search in Google Scholar

Largeault, J. (1993), Intuition et intuitionnisme, Vrin, Paris.Search in Google Scholar

Lautman, A. (1937), Essai sur les notions de structure et d’existence en mathématiques, Hermann, Paris.Search in Google Scholar

Lawson, H.B.Jr. (1985), The Theory of Gauge Fields in Four Dimensions, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No. 58, American Mathematical Society, Providence.10.1090/cbms/058Search in Google Scholar

Mac Lane, S. (1980), “The genesis of mathematical structures, as exemplified in the work of Charles Ehresmann”, Cahiers de topologie et géométrie différentielle, 21 (4), 353–365.Search in Google Scholar

Mac Lane, S. (1986), Mathematics, Form and Function, Springer-Verlag, New York. Maddy, P. (1980), “Perception and Mathematical Intuition”, The Philosophical Review, 89 (2), 163–196.10.2307/2184647Search in Google Scholar

Mac Lane, S. (1997), Naturalism in Mathematics, Clarendon Press, Oxford, 1997.Search in Google Scholar

Manin, Yu I. (1981), Mathematics and Physics, Birkhäuser, Basel.10.1007/978-1-4899-6782-4Search in Google Scholar

Milnor, J.W. (1965), Lectures on the h-cobordism theorem, Princeton University Press, Princeton.10.1515/9781400878055Search in Google Scholar

Montonen, C., and D. Olive (1997), “Magnetic monopoles as gauge particles?”, Phys. Lett., 72B, 117–120.Search in Google Scholar

Mumford, D., Series, C. and D. Wright (2002), Indra’s Pearls. The Vision of Felix Klein, Cambridge University Press.10.1017/CBO9781107050051Search in Google Scholar

Murasugi, K. (1996), Knot theory and its applications, Birkhäuser, Boston.Search in Google Scholar

Neumann, J. von (1961), “The Mathematician. ‘The work of the mind’”, in Collected Works, Vol. I, Pergamon Press, London, 1–9.Search in Google Scholar

Peirce, Ch. (1976), The New Elements of Mathematics, Vol. IV: Mathematical Philosophy, edited by C. Eiselle, Mouton & Co. Publishers, The Hague.Search in Google Scholar

Penrose, R. (1989), The Emperor’s New Mind, Oxford University Press, Oxford.Search in Google Scholar

Poincaré, H. (1898), “On the foundations of geometry”, The Monist, 9, 1–43.Search in Google Scholar

Poincaré, H. (1902), La Science et l’Hypothèse, Flammarion, Paris.Search in Google Scholar

Pontryagin, L.S. (1946), Topological groups, Princeton University Press, Princeton.Search in Google Scholar

Prauss, G. (1994), “Kant and the Straight Triangle”, in Philosophy, Mathematics and Modern Physics, E. Rudolph and I.-O. Stamatescu (Eds.), Springer, Heidelberg. 226–234.Search in Google Scholar

Resnik, M.D. (1975), “Mathematical Knowledge and Pattern Recognition”, Canadian Journal of Philosophy, 5, 25–39.10.1080/00455091.1975.10716095Search in Google Scholar

Resnik, M.D. (1981), “Mathematics as a Science of Patterns: Ontology and Reference”, Noûs, 15, 529–550.10.2307/2214851Search in Google Scholar

Riemann, B. (1990), “On the Hypothesis which lie at the Basis of Geometry”, in Gesammelte mathematische Werke/Collected Papers, new edition edited by R. Narasimhan, Springer, Berlin.Search in Google Scholar

Roseman, D. (1997a), “On Wiener’s thought on the computer as an aid in visualizing higher-dimensional forms and its modern ramifications”, in V. Mandrekar and P.R. Mesani (eds.), Proceedings of Nobert Wiener Centenary Congress, PSAM, Vol. 52, American Mathematical Society, 441–471.10.1090/psapm/052/1440925Search in Google Scholar

Roseman, D. (1997b), “What Should a Surface in 4-Space Look Like?”, in Visualization and Mathematics: Experiments, Simulations, Environments, H.C. Hege & K. Polthier (eds.), Springer, Berlin, 67–82.10.1007/978-3-642-59195-2_5Search in Google Scholar

Rota, G.-C., D.H. Sharp, and R. Sokolowski (1998), “Syntax, Semantics, and the Problem of the Identity of Mathematical Objects”, Philosophy of Science, 55, 376–386.10.1086/289442Search in Google Scholar

Rovelli, C. (1995), “Outline of a generally covariant quantum field theory and quantum theory of gravity”, Journal of Mathematical Physics, 36 (1), 6529–6547.10.1063/1.531255Search in Google Scholar

Smale, S. (1958), “A classification of immersions of the two-sphere”, Trans. Amer. Math. Soc., 90, 281–290.10.1090/S0002-9947-1959-0104227-9Search in Google Scholar

Thom, R. (1990), Apologie du logos, Hachette, Paris.Search in Google Scholar

Thom, R. (1992), “L’Antériorité Ontologique du Continu”, in J.-M. Salanskis & H. Sinaceur (Eds.), Le Labyrinthe du Continu, Springer-Verlag, Heidelberg-Paris, 137–143.Search in Google Scholar

Thurston, W.P. (1994), “On proof and progress in mathematics”, Bulletin of the American Mathematical Society, 30 (2), 161–177.10.1090/S0273-0979-1994-00502-6Search in Google Scholar

Tymoczko, Th. (ed.) (1998), New Directions in the Philosophy of Mathematics, Princeton University Press, Princeton.Search in Google Scholar

Suppes, P. (1977), “Is Visual Space Euclidean?”, Synthese, 35, 397–421.10.1007/BF00485624Search in Google Scholar

Tieszen, R.L. (1989), Mathematical Intuition: Phenomenology and Mathematical Knowledge, Kluwer, Dordrecht.10.1007/978-94-009-2293-8Search in Google Scholar

Torretti, R. (1972), “On the subjectivity of objective space”, in Proceedings of the Third International Kant Congress, L.W. Beck (ed.), D. Reidel, Dordrecht, 568–573.10.1007/978-94-010-3099-1_58Search in Google Scholar

Vuillemin, J. (1994), L’Intuitionnisme Kantien, Vrin, Paris.Search in Google Scholar

Webb, J. (1987), “Immanuel Kant and the greater glory of geometry”, in Naturalistic Epistemology, A. Shimony and D. Nailis (Eds.), Boston Studies in the Philosophy of Science, Vol. 100, D. Reidel, Dordrecht, 17–70.10.1007/978-94-009-3735-2_2Search in Google Scholar

Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton.Search in Google Scholar

Weyl, H. (1973), Das Kontinuum (first German edition: 1918), Chelsea, New York.10.1515/9783112451144Search in Google Scholar

Wiener, N. (1922), “The relation of space and geometry to experience”, The Monist, 32, 12–60; 200–247; 364–394.10.5840/monist192232329Search in Google Scholar

Wilder, R. (1967), “The Role of Intuition”, Science, 156, 605–610.10.1126/science.156.3775.605Search in Google Scholar

Willaschek, M. (1997), “Der transzendentale Idealismus und die Idealität von Raum und Zeit”, Zeitschrift für philosophische Forschung, 51, 537–563.Search in Google Scholar

Witten, E. (1988), “Topological Quantum Field Theory”, Communications in Mathematical Physics, 117, 353–386.10.1007/BF01223371Search in Google Scholar

Wojtowicz, R. (1997), “The Metaphysical Exposition of Space and Time”, Synthese, 113, 71–115.10.1023/A:1005008016234Search in Google Scholar

Yang, C.N., Mills, R. (1954), “Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Physical Review, 96 (1), 191–195.10.1103/PhysRev.96.191Search in Google Scholar

Yu, T.T., Yang, C.N. (1975), “Concept of non-integrable phase factors and global formulation of gauge fields”, Physical Review, D12, 3845–3857.Search in Google Scholar

Zeidler, E. (2011), Quantum Field Theory III: Gauge Theory. A Bridge between Mathematicians and Physicists, Springer-Verlag; Berlin Heidelberg.10.1007/978-3-642-22421-8Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo