Open Access

Two Dimensions Simulation of a Magnetotactic Bacteria Cell Exposed to an Electromagnetic Field at 3 GHz


Cite

[1] L Yan, H Da, S Zhang, VM López, W Wang. Bacterial magnetosome and its potential application. Microbiological Research. 2017; 203:19-2810.1016/j.micres.2017.06.00528754204 Search in Google Scholar

[2] E Alphandéry, I Chebbi, F Guyot, and M Durand-Dubief. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. International Journal of Hyperthermia. 2013; 29 (8):801-809.10.3109/02656736.2013.82152724024595 Search in Google Scholar

[3] D Gandia, L Gandarias, I Rodrigo, J Robles-García, et al. Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Small. 2019:15 (41).10.1002/smll.20190262631454160 Search in Google Scholar

[4] J F Collingwood, N D Telling. Iron oxides in the human brain. In: D Faivre, editor. Iron Oxides: From Nature to Applications. Wiley-VCH Verlag GmbH & Co. KgaA; 2016. 143–176.10.1002/9783527691395.ch7 Search in Google Scholar

[5] P C Fannin. Wideband Measurement and Analysis Techniques for the Determination of the Frequency-Dependent, Complex Susceptibility of Magnetic Fluids. Advances in Chemical Physic. 1998; 104:181-292.10.1002/9780470141632.ch3 Search in Google Scholar

[6] P C Fannin, C N Marin, I Malaescu, N Stefu. An investigation of the microscopic and macroscopic properties of magnetic fluids. Physica B: Condensed Matter. 2007; 388 (1-2): 87-92.10.1016/j.physb.2006.05.008 Search in Google Scholar

[7] P C Fannin, I Malaescu, C N Marin, N Stefu. Frequency and field dependence of the electromagnetic field propagation constant in magnetic fluids in microwave range. Physics Conference Tim-07. Timisoara, 2007. Search in Google Scholar

[8] D Walton, H Böhnel, D Dunlop. Response of magnetic nanoparticles to microwaves. Applied Physics Letters. 2004; 85:5367–5369.10.1063/1.1829771 Search in Google Scholar

[9] J A Pearce, J R Cook, P J Hoopes, A Giustini. FEM numerical model study of heating in magnetic nanoparticles. Proc SPIE Int Soc Opt Eng. 2011; 7901.10.1117/12.875288387730424386534 Search in Google Scholar

[10] S Ma, J Sun. Simulation Study on Collective Magnetic Properties and Magnetocaloric Effect of Magnetic Nanoparticles Assembled by Magnetic Field. Science Discovery. 2018; 6(1):27-34.10.11648/j.sd.20180601.15 Search in Google Scholar

[11] W Lin, W Zhang, G A Paterson, et al. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome. 2020; 8(152).10.1186/s40168-020-00931-9760233733126926 Search in Google Scholar

[12] D Schüler. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiology Reviews. 2008; 32(4):654-672.10.1111/j.1574-6976.2008.00116.x18537832 Search in Google Scholar

[13] V Ravika, J Ritu, K S Sharma. Dielectric properties of water at microwave frequencies. International Journal of Engineering Research & Technology. 2014; 3.3. Search in Google Scholar

[14] G Wang, Y Chang, L Wang, L Liu, C Liu. Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles. Materials Research Bulletin. 2013; 48(3):1007-1012.10.1016/j.materresbull.2012.11.089 Search in Google Scholar

[15] D Serantes, K Simeonidis, M Angelakeris, O Chubykalo-Fesenko, et al., Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C. 2014; 118 (11):5927-5934.10.1021/jp410717m Search in Google Scholar

[16] E Myrovali, N Maniotis, A Makridis, et al., Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Scientific Reports. 2016; 6.10.1038/srep37934512657527897195 Search in Google Scholar