1. bookVolume 11 (2022): Issue 1-2 (December 2022)
Journal Details
First Published
05 Dec 2019
Publication timeframe
2 times per year
Open Access

Using Data Mining in the Sentiment Analysis Process on the Financial Market

Published Online: 08 Feb 2023
Volume & Issue: Volume 11 (2022) - Issue 1-2 (December 2022)
Page range: 36 - 58
Journal Details
First Published
05 Dec 2019
Publication timeframe
2 times per year

Al-Shabi, M. (2020). Evaluating the performance of the most important Lexicons used to Sentiment analysis and opinions Mining, IJCSNS International Journal of Computer Science and Network Security, 20(1), January 2020. Search in Google Scholar

Assunção, M. D. et al. (2015). Big Data computing and clouds: Trends and future directions, Journal of Parallel and Distributed Computing, 79–80, pp.3–15. doi: 10.1016/j.jpdc.2014. Search in Google Scholar

Balazs, J. A. and Velásquez, J. D. (2016). Opinion Mining and Information Fusion: A survey, Information Fusion, 27, pp. 95–110. doi: 10.1016/j.inffus.2015. Search in Google Scholar

Barham, H. (2017). Achieving competitive advantage through big data: A literature review, PICMET 2017 - Portland International Conference on Management of Engineering and Technology: Technology Management for the Interconnected World, Proceedings, 2017-Janua, p. 1–7. doi: 10.23919/PICMET.2017.8125459.10.23919/PICMET.2017.8125459 Search in Google Scholar

Berger, A. L., Della Pietra, S. A. and Della Pietra, V. J. (1996). A Maximum Entropy Approach to Natural Language Processing, Computational Linguistice, Cambridge, MA: MIT Press, 22(1), p. 39–71. Available at: https://aclanthology.org/J96-1002. Search in Google Scholar

Chaturvedi, I. et al. (2018). Distinguishing between facts and opinions for sentiment analysis: Survey and challenges, Information Fusion, 44, p. 65–77. doi: 10.1016/j.inffus.2017. Search in Google Scholar

Colasanto, F. et al. (2022). BERT’s sentiment score for portfolio optimization: a fine-tuned view in Black and Litterman model, Neural Computing and Applications. Springer London, 1. doi: 10.1007/s00521-022-07403-1.10.1007/s00521-022-07403-1 Search in Google Scholar

Cordeiro, E. R. et al. (2014). Posttherapy Follow-up and First Intervention, Prostate Cancer: Diagnosis and Clinical Management, (June), pp. 211–229. doi: 10.1002/9781118347379.ch11. Cortes, C. and Vapnik, V. (1995). ‘Support-vector networks’, Machine Learning, 20(3), p. 273–297. doi: 10.1007/BF00994018.10.1007/BF00994018 Search in Google Scholar

Denecke, K. (2008). Using SentiWordNet for multilingual sentiment analysis, in 2008 IEEE 24th International Conference on Data Engineering Workshop. IEEE, pp. 507–512. doi: 10.1109/ICDEW.2008.4498370.10.1109/ICDEW.2008.4498370 Search in Google Scholar

Devlin, J. et al. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding, NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm), pp. 4171–4186. Search in Google Scholar

Erevelles, S., Fukawa, N. and Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing, Journal of Business Research, 69(2), p. 897–904. doi: 10.1016/j.jbusres.2015. Search in Google Scholar

Ertel, W. (2017). Machine Learning and Data Mining, in, pp. 175–243. doi: 10.1007/978-3-319-58487-4_8.10.1007/978-3-319-58487-4_8 Search in Google Scholar

Esuli, A. and Sebastiani, F. (2006). {SENTIWORDNET}: A Publicly Available Lexical Resource for Opinion Mining, in Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{’}06). Genoa, Italy: European Language Resources Association (ELRA). Available at: http://www.lrecconf.org/proceedings/lrec2006/pdf/384_pdf.pdf. Search in Google Scholar

Fan, J. and Gu, J. (2003). Semiparametric estimation of Value at Risk, The Econometrics Journal, 6(2), pp. 261–290. doi: 10.1111/1368-423X.t01-1-00109.10.1111/1368-423X.t01-1-00109 Search in Google Scholar

Gandomi, A. and Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics, International Journal of Information Management, 35(2), p. 137–144. doi: 10.1016/j.ijinfomgt.2014. Search in Google Scholar

Gautam, G. and Yadav, D. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis, in 2014 Seventh International Conference on Contemporary Computing (IC3). IEEE, p. 437–442. doi: 10.1109/IC3.2014.6897213.10.1109/IC3.2014.6897213 Search in Google Scholar

Giambattista, Amati Giuseppe, A. et al. (2008). FUB, IASI-CNR and University of Tor Vergata at TREC 2008 Blog Track, NIST Special Publication. Search in Google Scholar

Giudici, P., Mezzetti, M. and Muliere, P. (2003). Mixtures of products of Dirichlet process for variable selection in survival analysis, Journal of Statistical Planning and Inference, 111(1–2), p. 101–115. doi: 10.1016/S0378-3758(02)00291-4.10.1016/S0378-3758(02)00291-4 Search in Google Scholar

Godbole, N., Manjunath, S. and Skiena, S. (2007). Large-Scale Sentiment Analysis for News and Blogs Namrata, in Conference: Proceedings of the International Conference on Weblogs and Social Media. Search in Google Scholar

Hemmatian, F. and Sohrabi, M. K. (2019). A survey on classification techniques for opinion mining and sentiment analysis, Artificial Intelligence Review, 52(3), pp. 1495–1545. doi: 10.1007/s10462-017-9599-6.10.1007/s10462-017-9599-6 Search in Google Scholar

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews, KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. doi: 10.1145/1014052.1014073.10.1145/1014052.1014073 Search in Google Scholar

Hutto, C.J. and Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for, Eighth International AAAI Conference on Weblogs and Social Media, pp.18. Available at: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109. Search in Google Scholar

Kabir, N. and Carayannis, E. (2013). Big data, tacit knowledge and organizational competitiveness, Journal of Intelligence Studies in Business, 3(3), pp.54–62. doi: 10.37380/jisib.v3i3.76.10.37380/jisib.v3i3.76 Search in Google Scholar

Karimi, A., Rossi, L. and Prati, A. (2021). AEDA: An Easier Data Augmentation Technique for Text Classification, Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021, pp. 2748–2754. doi: 10.18653/v1/2021.findings-emnlp.234.10.18653/v1/2021.findings-emnlp.234 Search in Google Scholar

Li, X. et al. (2019). Exploiting bert for end-to-end aspect-based sentiment analysis_, WNUT@EMNLP 2019 - 5th Workshop on Noisy User-Generated Text, Proceedings, pp. 34–41. doi: 10.18653/v1/d19-5505.10.18653/v1/D19-5505 Search in Google Scholar

Liu, B. et al. (1998). Integrating Classification and Association Rule Mining, Knowledge Discovery and Data Mining, pp.80–86. Available at: http://www.aaai.org/Papers/KDD/1998/KDD98-012.pdf%5Cnhttp://www.aaai.org/Library/KDD/1998/kdd98-012.php%5Cnhttp://citeseer.ist.psu.edu/liu98integrating.html. Search in Google Scholar

Liu, Y. et al. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach, (1). Available at: http://arxiv.org/abs/1907.11692. Search in Google Scholar

Ma, D. et al. (2017). Interactive Attention Networks for Aspect-Level Sentiment Classification, in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, pp. 4068–4074. doi: 10.24963/ijcai.2017/568.10.24963/ijcai.2017/568 Search in Google Scholar

Manyika, J. et al. (2011). Big data: The next frontier for innovation, competition and productivity, McKinsey Global Institute, (June), pp.156. Available at: https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf. Search in Google Scholar

Michael Steinbach, George Karypis and Vipin Kumar (2000). A Comparison of Document Clustering Techniques, KDD workshop on text mining, pp.1–2. Available at: https://www.bibsonomy.org/bibtex/210e5c1e3ff54d9dce505a231f8ae7b32/hotho. Search in Google Scholar

Miller, G. A. (1995). WordNet: A Lexical Database for English, Communications of the ACM, 38(11), pp.39–41. doi: 10.1145/219717.219748.10.1145/219717.219748 Search in Google Scholar

Mohanty, A. K., Senapati, M. R. and Lenka, S. K. (2013). An improved data mining technique for classification and detection of breast cancer from mammograms, Neural Computing and Applications, 22(1), pp.303–310. doi: 10.1007/s00521-012-0834-4.10.1007/s00521-012-0834-4 Search in Google Scholar

Phan, M. H. and Ogunbona, P. O. (2020). Modelling Context and Syntactical Features for Aspect-based Sentiment Analysis, pp. 3211–3220. doi: 10.18653/v1/2020.acl-main.293.10.18653/v1/2020.acl-main.293 Search in Google Scholar

Prathi, J. K., Raparthi, P. K. and Gopalachari, M. V. (2020). Real-Time Aspect-Based Sentiment Analysis on Consumer Reviews, Data Engineering and Communication Technology. Advances in Intelligent Systems and Computing, pp. 801–810. doi: 10.1007/978-981-15-1097-7_67.10.1007/978-981-15-1097-7_67 Search in Google Scholar

Provost, F. and Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making, Big Data, 1(1), pp. 51–59. doi: 10.1089/big.2013.1508.10.1089/big.2013.1508 Search in Google Scholar

Russom, P. (2021) Big data analytics, A Closer Look at Big Data Analytics. Search in Google Scholar

Sangeetha, S. and Sreeja, A. K. (2015). No Science No Humans, No New Technologies No Changes “Big Data a Great Revolution”, International Journal of Computer Science and Information Technologies, 6(4), pp. 3269–3274. Search in Google Scholar

Sheela, L. J. (2016). A Review of Sentiment Analysis in Twitter Data Using Hadoop, International Journal of Database Theory and Application, 9(1), pp. 77–86. doi: 10.14257/ijdta.2016. Search in Google Scholar

Shim, J. P. et al. (2015). Big data and analytics: Issues, solutions, and ROI, Communications of the Association for Information Systems, 37(1), pp. 797–810. doi: 10.17705/1cais.03739.10.17705/1CAIS.03739 Search in Google Scholar

Siganos, A., Vagenas-Nanos, E. and Verwijmeren, P. (2017). Divergence of sentiment and stock market trading, Journal of Banking & Finance, 78, pp. 130–141. doi: 10.1016/j.jbankfin.2017. Search in Google Scholar

Thelwall, M., Homsi, M. N. and Prabowo, R. (2009). Sentiment analysis: A combined approach Cite this paper Related papers SA2 vinodhini Manieniyan Sent iment Analysis and Sent iment Classificat ion using NLP IRJET Journal Mult i-Class Sent iment Analysis using a Hierarchical Logist ic Model Tree Approach. Search in Google Scholar

Theodorou, T. I. et al. (2021). An AI-enabled stock prediction platform combining news and social sensing with financial statements, Future Internet, 13(6), pp. 1–22. doi: 10.3390/fi13060138.10.3390/fi13060138 Search in Google Scholar

Wei, Y.-C. et al. (2017). Informativeness of the market news sentiment in the Taiwan stock market, The North American Journal of Economics and Finance, 39, pp. 158–181. doi: 10.1016/j.najef.2016. Search in Google Scholar

Weng, B., Ahmed, M. A. and Megahed, F. M. (2017). Stock market one-day ahead movement prediction using disparate data sources, Expert Systems with Applications, 79, pp. 153–163. doi: 10.1016/j.eswa.2017. Search in Google Scholar

Wu, X. et al. (2019). Conditional BERT Contextual Augmentation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11539 LNCS, pp.84–95. doi: 10.1007/978-3-030-22747-0_7.10.1007/978-3-030-22747-0_7 Search in Google Scholar

Xu, C. et al. (2020). BERT-of-Theseus: Compressing BERT by Progressive Module Replacing, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, p.7859–7869. doi: 10.18653/v1/2020.emnlp-main.633.10.18653/v1/2020.emnlp-main.633 Search in Google Scholar

Xu, H. et al. (2020). DomBERT: Domain-oriented language model for aspect-based sentiment analysis, Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020, pp.1725–1731. doi: 10.18653/v1/2020.findings-emnlp.156.10.18653/v1/2020.findings-emnlp.156 Search in Google Scholar

Xu, H. et al. (2021). Understanding Pre-trained BERT for Aspect-based Sentiment Analysis, p.244–250. doi: 10.18653/v1/2020.coling-main.21.10.18653/v1/2020.coling-main.21 Search in Google Scholar

Yi, J. et al. (2003). Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques, in Third IEEE International Conference on Data Mining. IEEE Comput. Soc, pp. 427–434. doi: 10.1109/ICDM.2003.1250949.10.1109/ICDM.2003.1250949 Search in Google Scholar

Yıldırım, D. C., Toroslu, I. H. and Fiore, U. (2021). Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators, Financial Innovation. Springer Berlin Heidelberg, 7(1), pp. 1–36. doi: 10.1186/s40854-020-00220-2.10.1186/s40854-020-00220-2 Search in Google Scholar

Zhang, X. et al. (2018). Improving stock market prediction via heterogeneous information fusion, Knowledge-Based Systems, 143, pp. 236–247. doi: 10.1016/j.knosys.2017. Search in Google Scholar

Recommended articles from Trend MD