1. bookVolume 37 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
2001-7367
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Nowcasting Register Labour Force Participation Rates in Municipal Districts Using Survey Data

Published Online: 26 Dec 2021
Page range: 1009 - 1045
Received: 01 Mar 2020
Accepted: 01 Apr 2021
Journal Details
License
Format
Journal
eISSN
2001-7367
First Published
01 Oct 2013
Publication timeframe
4 times per year
Languages
English
Abstract

In the Netherlands, very precise and detailed statistical information on labour force participation is derived from registers. A drawback of this data source is that it is not timely since definitive versions typically become available with a delay of two years. More timely information on labour force participation can be derived from the Labour Force Survey (LFS). Quarterly figures, for example, become available six weeks after the calendar quarter. A well-known drawback of this data source is the uncertainty due to sampling error. In this article, a nowcast method is proposed to produce preliminary but timely nowcasts for the register labour force participation on a quarterly frequency at the level of municipalities and neighbourhoods, using the data from the LFS. As a first step, small area estimates for quarterly municipal figures on labour force participation are obtained using the LFS data and the unit-level modelling approach of Battese, Harter and Fuller (1988). Subsequently, time series of these small area estimates at the municipal level are combined with time series on register labour force participation in a bivariate structural time series model in order to nowcast the register labour force participation at the level of municipalities and neighbourhoods.

Keywords

Arima, S., W.R. Bell, G.S. Datta, C. Franco, and B. Liseo. 2017. “Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error.” Journal of the Royal Statistical Society Series A, 180: 1191–1209. DOI: https://cran.r-project.org/web/packages/hbsae/hbsae.pdf.10.1111/rssa.12321 Search in Google Scholar

Bakker, B.F.M. 2012. “Estimating the Validity of Administrative Variables.” Statistica Neerlandica, 66: 8–17. DOI: https://doi.org/10.1111/j.1467-9574.2011.00504.x.10.1111/j.1467-9574.2011.00504.x Search in Google Scholar

Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An error components model for prediction of county crop areas using survey and satellite data.” Journal of the American Statistical Association. 83: 28–36. DOI: https://doi.org/10.2307/2288915.10.2307/2288915 Search in Google Scholar

Bell, W.R., H.C. Chung, G.S. Datta, and C. Franco. 2019. “Measurement error in small area estimation: Functional versus structural versus naïve models.” Survey Methodology 45: 61–80. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2019001/article/00005-eng.htm (accessed August 2020). Search in Google Scholar

Bijlsma, I., J.A. van den Brakel, R. van der Velden, and J. Allen. 2020. “Estimating literacy levels at a detailed regional level; An application using Dutch data.” Journal of Official Statistics, 36: 251–274. DOI: http://dx.doi.org/10.2478/JOS-2020-0014.10.2478/jos-2020-0014 Search in Google Scholar

Blight, B.J.N., and A.J. Scott. 1973. “A stochastic model for repeated surveys.” Journal of the Royal Statistical Society Series B, 35: 61–66. DOI: https://doi.org/10.1111/j.2517-6161.1973.tb00936.x.10.1111/j.2517-6161.1973.tb00936.x Search in Google Scholar

Bollineni-Balabay, O., J.A. van den Brakel, and F. Palm. 2017. “State space time series modelling of the Dutch Labour Force Survey: Model selection and mean squared error estimation.” Survey Methodology, 43: 41–67. Available at: http://www.statcan.gc.ca/pub/12-001-x/2017001/article/14819-eng.htm (accessed November 2019). Search in Google Scholar

Boonstra, H.J. 2012. hbsae: Hierarchical Bayesian Small Area Estimation.R package version 1.0. https://cran.r-project.org/web/packages/hbsae/hbsae.pdf (accessed February 2020). Search in Google Scholar

Boonstra, H.J. and J.A. van den Brakel. 2019. “Estimation of level and change for unemployment using structural time series models.” Survey Methodology, 45: 395 – 425. Available at: http://www.statcan.gc.ca/pub/12-001-x/2019003/article/00005-eng.htm (accessed February 2020). Search in Google Scholar

Boonstra, H.J., J.A. van den Brakel, B. Buelens, S. Krieg, and M. Smeets. 2008. “Towards small area estimation at Statistics Netherlands.” Metron, LXVI (1): 21-49. Search in Google Scholar

Boonstra, H.J., B. Buelens, and M. Smeets. 2007. Estimation of municipal unemployment fractions – a simulation study comparing different small area estimators. Technical report, BPA-no. DMH-2007-04-20-HBTA, Statistics Netherlands, Heerlen. Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjgldbMivrzAhVKDuwKHW-jCQEQFnoECAoQAQ&url=https%3A%2F%2Fwww.cbs.nl%2F-%2Fmedia%2Fimported%2Fdocuments%2F2011%2F02%2F2011-x10-02.pdf%3Fla%3Dnl-nl&usg=AOvVaw3n58-noqm4X0g4z5v28QSL (accessed June 2020). Search in Google Scholar

Boonstra, H.J., B. Buelens, K. Leufkens, and M. Smeets. 2011. Small area estimates of labour status in Dutch municipalities. Technical Report 201102, Statistics Netherlands. Search in Google Scholar

CBS Statline (2017). Statline statistical database: Avaliable at: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83524NEDtable?dl=40C7/ (accessed November 2021). Search in Google Scholar

Choi, H., and H. Varian. 2012. “Predicting the Present with Google Trends.” Economic Record 88 Supplement s1: 2–9. DOI: https://doi.org/10.1111/j.1475-4932.2012.00809.x.10.1111/j.1475-4932.2012.00809.x Search in Google Scholar

Cochran, W. 1977. Sampling Theory. New York: John Wiley & Sons, Inc. Search in Google Scholar

Daas, P., and M. Puts. 2014. “Big data as a source of statistical information.” The Survey Statistician, 69: 22–31. Available at: http://isi-iass.org/home/wp-content/uploads/n69-2014-01-issn.pdf (accessed November 2019). Search in Google Scholar

Datta, G.S., and M. Ghosh. 1991. “Bayesian Prediction in Linear Models: Applications to Small Area Estimation.” The Annals of Statistics, 19(4): 1748–1770. DOI: https://doi.org/10.1214/aos/1176348369.10.1214/aos/1176348369 Search in Google Scholar

Datta, G., P. Lahiri, T. Maiti, and K. Lu. 1999. “Hierarchical Bayes estimation of unemployment rates for the states of the U.S.” Journal of the American Statistical Association 94: 1074–1082. DOI: https://doi.org/10.2307/2669921.10.2307/2669921 Search in Google Scholar

Doornik, J.A. 2009. An Object-oriented Matrix Programming Language Ox 6. London: Timberlake Consultants Press. Search in Google Scholar

Durbin, J., and S.J. Koopman. 2012. Time Series Analysis by State Space Methods (2nd edition). Oxford: Oxford University Press.10.1093/acprof:oso/9780199641178.001.0001 Search in Google Scholar

Fay, R.E., and R.A. Herriot. 1979. “Estimates of income for small places: an application of James-Stein procedures to Census data.” Journal of the American Statistical Association 74: 269–277. DOI: https://doi.org/10.1080/01621459.1979.10482505.10.1080/01621459.1979.10482505 Search in Google Scholar

Giannone, D., L. Reichlin, and D. Small. 2008. “Nowcasting: The real-time informational content of macroeconomic data.” Journal of Monetary Economics 55: 665–676. DOI: https://doi.org/10.1016/j.jmoneco.2008.05.010.10.1016/j.jmoneco.2008.05.010 Search in Google Scholar

Hand, D. 2018. “Statistical challenges of administrative and transaction data.” Journal of the Royal Statistical Society series A, 181: 1–51. DOI: https://doi.org/10.1111/rssa.12315.10.1111/rssa.12315 Search in Google Scholar

Harvey, A.C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.10.1017/CBO9781107049994 Search in Google Scholar

Harvey, A.C., and C.H. Chung. 2000. “Estimating the underlying change in unemployment in the UK.” Journal of the Royal Statistical Society Series A, 163: 303–339. DOI: https://doi.org/10.1111/1467-985X.00171.10.1111/1467-985X.00171 Search in Google Scholar

Hobza, T., and D. Morales. 2016. “Empirical best prediction under unit-level logit mixed models.” Journal of Official Statistics, 32: 661–692. DOI: https://doi.org/10.1515/jos-2016-0034.10.1515/jos-2016-0034 Search in Google Scholar

Hobza, T., D. Morales, and L. Santamaria. 2018. “Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models.” TEST, 27: 270–294. DOI: https://doi.org/10.1007/s11749-017-0545-3.10.1007/s11749-017-0545-3 Search in Google Scholar

Koopman, S.J., A.C. Harvey, J.A. Doornik, and N. Shephard. 2007. STAMP8: Structural Time Series Analyser, Modeller and Predictor. London: Timberlake. Search in Google Scholar

Koopman, S.J., N. Shephard, and J.A. Doornik. 2008. SsfPack 3.0: Statistical Algorithms for Models in State Space Form, London: Timberlake Consultants Press. Search in Google Scholar

MacGibbon, B., and T.J. Tomberlin. 1989. “Small Area Estimates of Proportions via Empirical Bayes Techniques.” Survey Methodology, 15: 237–252. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/1989002/article/14565-eng.pdf (accessed August 2021). Search in Google Scholar

Malec, D., J. Sedransk, C.L. Moriarity, and F.B. Leclere. 1997. “Small Area Inference for Binary Variables in the National Health Interview Survey.” Journal of the American Statistical Association, 92: 815–826. DOI: https://doi.org/10.1080/01621459.1997.10474037.10.1080/01621459.1997.10474037 Search in Google Scholar

Marino, M.F., M.G. Ranalli, N. Salvati, and M. Alfo. 2019. “Semiparametric empirical best prediction for small area estimation of unemployment indicators.” The Annals of Applied Statistics, 13: 1166–1197. DOI: https://doi.org/10.1214/18-AOAS1226.10.1214/18-AOAS1226 Search in Google Scholar

Pfeffermann, D. 2002. “Small area estimation – new developments and directions.” International Statistical Review 70: 125–143. DOI: https://doi.org/10.1111/j.1751-5823.2002.tb00352.x.10.1111/j.1751-5823.2002.tb00352.x Search in Google Scholar

Pfeffermann, D. 2013. “New important developments in small area estimation.” Statistical Science 28: 40–68. DOI: https://doi.org/10.1214/12-STS395.10.1214/12-STS395 Search in Google Scholar

Pfeffermann, D., and L. Burck. 1990. “Robust Small Area Estimation combining Time Series and Cross-sectional Data.” Survey Methodology, 16: 217–237. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1990002/article/14534-eng.pdf?st=pRQklC03 (accessed October 2019). Search in Google Scholar

Pfeffermann, D., J.L. Eltinge, and L.D. Brown. 2015. “Methodological issues and challenges in the production of official statistics.” Journal of Survey Statistics and Methodology 3: 425–483. DOI: https://doi.org/10.1093/jssam/smv035.10.1093/jssam/smv035 Search in Google Scholar

Pfeffermann, D., and R. Tiller. 2005. “Bootstrap approximation to prediction MSE for state-space models with estimated parameters.” Journal of Time Series Analysis, 26: 893-916. DOI: https://doi.org/10.1111/j.1467-9892.2005.00448.x.10.1111/j.1467-9892.2005.00448.x Search in Google Scholar

Pfeffermann, D., and R. Tiller. 2006. “Small area estimation with state space models subject to benchmark constraints.” Journal of the American Statistical Association 101: 1387–1397. DOI: https://doi.org/10.1198/016214506000000591.10.1198/016214506000000591 Search in Google Scholar

Rao, J.N.K., and I. Molina. 2015. Small Area Estimation, second edition. New York: John Wiley & Sons.10.1002/9781118735855 Search in Google Scholar

Rao, J.N.K., and M. Yu. 1994. “Small area estimation by combining time-series and cross-sectional data.” The Canadian Journal of Statistics 22: 511–528. DOI: https://doi.org/10.2307/3315407.10.2307/3315407 Search in Google Scholar

Särndal, C.-E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling. New-York: Springer-Verlag.10.1007/978-1-4612-4378-6 Search in Google Scholar

Van den Brakel, J.A., E. Söhler, P. Daas, and B. Buelens. 2017. “Social media as a data source for official statistics; the Dutch Consumer Confidence Index.” Survey Methodology 43: 183–210. Available at: http://www.statcan.gc.ca/pub/12-001-x/2017002/article/54871-eng.htm (accessed October 2019). Search in Google Scholar

Van den Brakel, J.A., and S. Krieg. 2015. “Dealing with small sample sizes, rotation group bias and discontinuities in a rotating panel design.” Survey Methodology 41: 267–296. Available at http://www.statcan.gc.ca/pub/12-001-x/2015002/article/14231-eng.pdf (accessed November 2019). Search in Google Scholar

Van den Brakel, J.A., and S. Krieg. 2016. “Small area estimation with state-space common factor models for rotating panels.” Journal of the Royal Statistical Society Series A. 179: 763–791. DOI: https://doi.org/10.1111/rssa.12158.10.1111/rssa.12158 Search in Google Scholar

Vosen, M., and T. Schmidt. 2011. “Forecasting private consumption: survey-based indicators vs. Google trends.” Journal of Forecasting 30: 565–578. DOI: https://doi.org/10.1002/for.1213.10.1002/for.1213 Search in Google Scholar

Wallgren, A., and B. Wallgren. 2007. Register-based statistics; Administrative data for statistical purposes. John Wiley & Sons, West Sussex.10.1002/9780470061350 Search in Google Scholar

Ybarra, L.M.R., and S.L. Lohr. 2008. “Small area estimation when auxiliary information is measured with error.” Biometrika 95: 919–931. DOI: https://doi.org/10.1093/biomet/asn048.10.1093/biomet/asn048 Search in Google Scholar

You, Y., J. Rao, and J. Gambino. 2003. “Model-based unemployment rate estimation for the Canadian Labour Force Survey: A hierarchical Bayes approach.” Survey Methodology 29: 25–32. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2003001/article/6602-eng.pdf (accessed November 2019). Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo