Open Access

Effects of Light Wavelength on Daughter Cladode Growth and Quality in Edible Cactus Nopalea cochenillifera Cultured in a Plant Factory with Artificial Light


Cite

Acevedo E., Badilla I., Nobel P.S. 1983. Water relations, diurnal activity changes, and productivity of a cultivated cactus, Opuntia ficus-indica. Plant Physiology 72: 775–780. DOI: 10.1104/pp.72.3.775.10.1104/pp.72.3.775Open DOISearch in Google Scholar

Bobich E.G., Nobel P.S. 2001. Vegetative reproduction as related to biomechanics, morphology and anatomy of four cholla cactus species in the Sonoran Desert. Annals of Botany 87: 485–493. DOI: 10.1006/anbo.2000.1360.10.1006/anbo.2000.1360Open DOISearch in Google Scholar

Cui M., Miller P.M., Nobel P.S. 1993. CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiology 103: 519–524. DOI: 10.1104/pp.103.2.519.10.1104/pp.103.2.519Open DOISearch in Google Scholar

Cruz-Hernández A., Paredes-López O. 2010. Enhancement of economical value of nopal and its fruits through biotechnology. Journal of the Professional Association for Cactus Development 12: 110–126.Search in Google Scholar

Devlin P.F., Kay S.A. 2000. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2510. DOI: 10.1105/tpc.12.12.2499.10.1105/tpc.12.12.2499Open DOISearch in Google Scholar

du Toit R., Volsteedt Y., Apostolides Z. 2001. Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166: 63–69. DOI: 10.1016/s0300-483x(01)00446-2.10.1016/s0300-483x(01)00446-2Open DOISearch in Google Scholar

Drennan P.M., Nobel P.S. 2000. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant, Cell and Environment 23: 767–781. DOI: 10.1046/j.1365-3040.2000.00588.x.10.1046/j.1365-3040.2000.00588.xOpen DOISearch in Google Scholar

El-Mostafa K., El Kharrassi Y., Badreddine A., Andre-oletti P., Vamecq J., El Kebbaj M.S. et al. M. 2014. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19: 14879–14901. DOI: 10.3390/molecules190914879.10.3390/190914879Open DOISearch in Google Scholar

Frego K.A., Staniforth R.J. 1985. Factors determining the distribution of Opuntia fragilis in the boreal forest of southeastern Manitoba. Canadian Journal of Botany 63: 2377–2382. DOI: 10.1139/b85-340.10.1139/b85-340Open DOISearch in Google Scholar

García-Saucedo P.A., Valdez-Morales M., Valverde M.E., Cruz-Hernández A., Paredes-López O. 2005. Plant regeneration of three Opuntia genotypes used as human food. Plant Cell, Tissue and Organ Culture 80: 215–219. DOI: 10.1007/s11240-004-9158-0.10.1007/s11240-004-9158-0Open DOISearch in Google Scholar

Gulmon S.L., Bloom A.J. 1979. C3 photosynthesis and high temperature acclimation of CAM in Opuntia basilaris Engelm. and Bigel. Oecologia 38: 217–222. DOI: 10.1007/bf00346565.10.1007/BF0034656528308891Open DOISearch in Google Scholar

Guzmán-Maldonado S.H., Paredes-López O. 1999. Bio-technology for the improvement of nutritional quality of food crop plants. In: Paredes-López O. (Ed.), Molecular biotechnology for plant food production. CRC Press, p. 553–620.Search in Google Scholar

Hidaka K., Okamoto A., Araki T., Miyoshi Y., Dan K., Imamura H., Kitano M. et al. 2014. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology 52: 63–71. DOI: 10.2525/ecb.52.63.10.2525/ecb.52.63Open DOISearch in Google Scholar

Hirama J. 2015. The history and advanced technology of plant factories. Environment Control in Biology 53: 47–48. DOI: 10.2525/ecb.53.47.10.2525/ecb.53.47Open DOISearch in Google Scholar

Horibe T., Yamada K. 2016. Hydroponics culture of edible Opuntia ‘Maya’: drought stress affects the development of spines on daughter cladodes. Environment Control in Biology 54: 153–156. DOI: 10.2525/ecb.54.153.10.2525/ecb.54.153Open DOISearch in Google Scholar

Horibe T. 2017. A cost-effective, simple, and productive method of hydroponic culture of edible Opuntia “Maya”. Environment Control in Biology 55: 171–174. DOI: 10.2525/ecb.55.171.10.2525/ecb.55.171Open DOISearch in Google Scholar

Hughes R.M., Vrana J.D., Song J., Tucker C.L. 2012. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phyto-chrome B proteins. Journal of Biological Chemistry 287: 22165–22172. DOI: 10.1074/jbc.m112.360545.10.1074/jbc.M112.360545338117622577138Open DOISearch in Google Scholar

Ju J., Bai H., Zheng Y., Zhao T., Fang R., Jiang L. 2012. A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications 3: 1247. DOI: 10.1038/ncomms2253.10.1038/ncomms2253353533523212376Open DOISearch in Google Scholar

Johkan M., Shoji K., Goto F., Hashida S., Yoshihara T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45: 1809–1814. DOI: 10.21273/hortsci.45.12.1809.10.21273/HORTSCI.45.12.1809Open DOISearch in Google Scholar

Kigel J., Cosgrove D.J. 1991. Photoinhibition of stem elongation by blue and red light. Effects on hydraulic and cell wall properties. Plant Physiology 95: 1049–1056. DOI: 10.1104/pp.95.4.1049.10.1104/pp.95.4.1049107765011537486Open DOISearch in Google Scholar

Kozai T. 2013. Plant factory in Japan – current situation and perspectives. Chronica Horticulturae 53: 8–11.Search in Google Scholar

Lakkireddy K.K.R., Kasturi K., Sambasiva Rao R.K.S. 2012. Role of hydroponics and aeroponics in soilless culture in commercial food production. Journal of Agricultural Science and Technology 1: 26–35.Search in Google Scholar

Li H., Tang C., Xu Z., Liu X., Han X. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science 4: 262–273. DOI: 10.5539/jas.v4n4p262.10.5539/jas.v4n4p262Open DOISearch in Google Scholar

Littlejohn R.O., Ku M.S.B. 1985. Light and temperature regulation of early morning crassulacean acid metabolism in Opuntia erinacea var columbiana (Griffiths) L. Benson. Plant Physiology 77: 489–491. DOI: 10.1104/pp.77.2.489.10.1104/pp.77.2.489106454316664082Open DOISearch in Google Scholar

Loik M.E. 2008. The effect of cactus spines on light interception and Photosystem II for three sympatric species of Opuntia from the Mojave Desert. Physiologia Plantarum 134: 87–98. DOI: 10.1111/j.1399-3054.2008.01110.x.10.1111/j.1399-3054.2008.01110.xOpen DOISearch in Google Scholar

Maas F.M., Bakx E.J., Morris D.A. 1995. Photocontrol of stem elongation and dry weight portioning in Phaseolus vulgaris L. by the blue-light content of photosynthetic photon flux. Journal of Plant Physiology 146: 665–671. DOI: 10.1016/s0176-1617(11)81930-9.10.1016/s0176-1617(11)81930-9Open DOISearch in Google Scholar

Monson R.K. 1989. On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Advances in Ecological Research 19: 57–110. DOI: 10.1016/s0065-2504(08)60157-9.10.1016/S0065-2504(08)60157-9Open DOISearch in Google Scholar

Mortensen L.M., Strømme E. 1987. Effects of light quality on some greenhouse crops. Scientia Horticulturae 33: 27–36. DOI: 10.1016/0304-4238(87)90029-x.10.1016/0304-4238(87)90029-xOpen DOISearch in Google Scholar

Nobel P.S., Geller G.N., Kee S.C., Zimmerman A.D. 1986. Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface. Plant, Cell and Environment 9: 279–287. DOI: 10.1111/1365-3040.ep11611688.10.1111/1365-3040.ep11611688Open DOISearch in Google Scholar

Nobel P.S., Israel A.A. 1994. Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. Journal of Experimental Botany 45: 295–303. DOI: 10.1093/jxb/45.3.295.10.1093/jxb/45.3.295Open DOISearch in Google Scholar

Norman F., Martin C.E. 1986. Effects of spine removal on Coryphantha vivipara in central Kansas. American Midland Naturalist 116: 118–124. DOI: 10.2307/2425943.10.2307/2425943Open DOISearch in Google Scholar

North G.B., Lin Moore T., Nobel P.S. 1995. Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. American Journal of Botany 82: 159–166. DOI: 10.2307/2445524.10.2307/2445524Open DOISearch in Google Scholar

Ogawa A., Eguchi T., Toyofuku K. 2012. Cultivation methods for leafy vegetables and tomatoes with low potassium content for dialysis patients. Environment Control in Biology 50: 407–414. DOI: 10.2525/ecb.50.407.10.2525/ecb.50.407Open DOISearch in Google Scholar

Osmond C.B. 1978. Crassulacean acid metabolism: a curiosity in context. Annual Review of Plant Physiology 29: 379–414. DOI: 10.1146/annurev.pp.29.060178.002115.10.1146/annurev.pp.29.060178.002115Open DOISearch in Google Scholar

Pimienta-Barrios E., Zañudo-Hernandez J., Rosas-Espinoza V.C., Valenzuela-Tapia A., Nobel P.S. 2005. Young daughter cladodes affect CO2 uptake by mother cladodes of Opuntia ficus-indica. Annals of Botany 95: 363–369. DOI: 10.1093/aob/mci034.10.1093/aob/mci034Open DOISearch in Google Scholar

Shetty A.A., Rana M.K., Preetham S.P. 2012. Cactus: a medicinal food. Journal of Food Science and Technology 49: 530–536. DOI: 10.1007/s13197-011-0462-5.10.1007/s13197-011-0462-5Open DOISearch in Google Scholar

Shibutani S., Kinoshita K. 1968. Studies on the ecological adaptation of lettuce. III. The ecological adaptation of Great Lakes 54 in the growth cabinet in which the temperature is controlled. Scientific reports of the Faculty of Agriculture, Okayama University 32: 25–34. [in Japanese with English abstract]Search in Google Scholar

Silos-Espino H., Valdez-Ortiz A., Rascón-Cruz Q., Rodríguez-Salazar E., Paredes-López O. 2006. Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 86: 397–403. DOI: 10.1007/s11240-006-9123-1.10.1007/s11240-006-9123-1Open DOISearch in Google Scholar

Stefanelli D., Winkler S., Jones R. 2011. Reduced nitrogen availability during growth improves quality in red oak lettuce leaves by minimizing nitrate content, and increasing antioxidant capacity and leaf mineral content. Agricultural Sciences 2: 477–486. DOI: 10.4236/as.2011.24061.10.4236/as.2011.24061Open DOISearch in Google Scholar

Stintzing F.C., Carle R. 2005. Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Molecular Nutrition and Food Research 49: 175–194. DOI: 10.1002/mnfr.200400071.10.1002/mnfr.200400071Open DOISearch in Google Scholar

Stutte G.W., Edney S., Skerritt T. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44: 79–82. DOI: 10.21273/hortsci.44.1.79.10.21273/HORTSCI.44.1.79Open DOISearch in Google Scholar

Tinyane P.P., Sivakumar D., Soundy P. 2013. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Scientia Horticulturae 161: 340–349. DOI: 10.1016/j.scienta.2013.06.024.10.1016/j.scienta.2013.06.024Open DOISearch in Google Scholar

Wahome P.K., Oseni T.O., Masarirambi M.T., Shongwe V.D. 2011. Effects of different hydroponics systems and growing media on the vegetative growth, yield and cut flower quality of gypsophila (Gypsophila paniculata L.). World Journal of Agricultural Sciences 7: 692–698.Search in Google Scholar

Wang H.-J., Wu L.-H., Wang M.-Y., Zhu Y.-H., Tao Q.- N., Zhang F.-S. 2007. Effects of amino acids replacing nitrate on growth, nitrate accumulation, and macroelement concentrations in pak-choi (Brassica chinensis L.). Pedosphere 17: 595–600. DOI: 10.1016/s1002-0160(07)60070-8.10.1016/S1002-0160(07)60070-8Open DOISearch in Google Scholar

Wang Y., Folta K.M. 2013. Contributions of green light to plant growth and development. American Journal of Botany 100: 70–78. DOI: 10.3732/ajb.1200354.10.3732/ajb.120035423281393Open DOISearch in Google Scholar

Yamori W., Zhang G., Takagaki M., Maruo T. 2014. Feasibility study of rice growth in plant factories. Rice Research 2(1); 119; 6 p. DOI: 10.4172/jrr.1000119.10.4172/jrr.1000119Open DOISearch in Google Scholar

Yanagi T., Yachi T., Okuda N., Okamoto K. 2006. Light quality of continuous illuminating at night to induce floral initiation of Fragaria chiloensis L. CHI- 24-1. Scientia Horticulturae 109: 309–314. DOI: 10.1016/j.scienta.2006.05.009.10.1016/j.scienta.2006.05.009Open DOISearch in Google Scholar

Yanata S., Takata K. 2014. Plant factory: The possible measures to revitalize the Wakayama’s economy. Regional Studies 43 (revised edition). Institute of Economic Research, Faculty of Economics, Wakayama University, 22 p.Search in Google Scholar

Zhao X., Yu X., Foo E., Symons G.M., Lopez J., Bendehakkalu K.T. et al. 2007. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiology 145: 106–118. DOI: 10.1104/pp.107.099838.10.1104/pp.107.099838197657917644628Open DOISearch in Google Scholar

Zhang T., Maruhnich S., Folta K.M. 2011. Green light induces shade avoidance symptoms. Plant Physiology 157: 1528–1536. DOI: 10.1104/pp.111.180661.10.1104/pp.111.180661325213721852417Open DOISearch in Google Scholar

eISSN:
2300-5009
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology, other