Cite

Abdi, R., Rust, A., Hogue, T.S., 2021. development of a multilayer deep neural network model for predicting hourly river water temperature from meteorological data. Front. Environ. Sci., 9., 433. https://doi.org/10.3389/fenvs.2021.738322Search in Google Scholar

Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T.B.M.J., Bilodeau, L., Robichaud, É., Thiémonge, N., Bobée, B., 2007. Predicting river water temperatures using stochastic models: case study of the Moisie River (Quebec, Canada). Hydrol. Process., 21, 1, 21–34. https://doi.org/10.1002/hyp.6353Search in Google Scholar

Asarian, J.E., Robinson, C., Genzoli, L., 2023. Modeling seasonal effects of river flow on water temperatures in an agriculturally dominated California River. Water Resour. Res., 59, 3, e2022WR032915. https://doi.org/10.1029/2022WR032915Search in Google Scholar

Azad, A.S., Sokkalingam, R., Daud, H., Adhikary, S.K., Khurshid, H., Mazlan, S.N.A., Rabbani, M.B.A., 2022. Water level prediction through Hybrid SARIMA and ANN models based on time series analysis: Red Hills Reservoir Case Study. Sustainability, 14, 3, 1843. https://doi.org/10.3390/su14031843Search in Google Scholar

Bacova Mitková, V., Halmova, D., Pekarova, P., Miklánek, P., 2023. The Copula application for analysis of the flood threat at the river confluences in the Danube River Basin in Slovakia. Water, 15, 984. https://doi.org/10.3390/w15050984Search in Google Scholar

Bahari, M., Hamid, N.Z.A., 2019. Analysis and prediction of temperature time series using chaotic approach. IOP Conf. Ser. Earth Environ. Sci., 286, 012027. https://doi.org/10.1088/1755-1315/286/1/012027Search in Google Scholar

Belotti, J., Mendes, J.J., Jr., Leme, M. Trojan, F., Stevan, S.L. Jr., Siqueira, H., 2021. Comparative study of forecasting approaches in monthly streamflow series from Brazilian hydroelectric plants using Extreme Learning Machines and Box & Jenkins models. J. Hydrol. Hydromech., 69, 2, 150–195. https://doi.org/10.2478/johh-2021-0001Search in Google Scholar

Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T.B.M.J., Bobée, B., 2007a. A review of statistical water temperature models. Can. Water Resour. J. Rev. Can. Ressour. Hydr., 32, 3, 179–192. https://doi.org/10.4296/cwrj3203179Search in Google Scholar

Benyahya, L., St-Hilaire, A., Quarda, T.B.M.J., Bobée, B., Ahmadi-Nedushan, B., 2007b. Modeling of water temperatures based on stochastic approaches: case study of the Deschutes River. J. Environ. Eng. Sci., 6, 4, 437–448. https://doi.org/10.1139/s06-067 Search in Google Scholar

Bisselink, B., Roo, A., Bernhard, J., Gelati, E., 2018. Future projections of water scarcity in the Danube River basin due to land use, water demand and climate change. J. Environ. Geogr., 11, 25–36. https://doi.org/10.2478/jengeo-2018-0010Search in Google Scholar

Bonacci, O., Đurin, B., Bonacci, T.R., Bonacci, D., 2022. The influence of reservoirs on water temperature in the downstream part of an open watercourse: A case study at Botovo Station on the Drava River. Water, 14, 21, 3534. https://doi.org/10.3390/w14213534Search in Google Scholar

Bonacci, O., Oskoruš, D., 2010. The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ. Earth Sci., 59, 8, 1661–1670. https://doi.org/10.1007/s12665-009-0148-8Search in Google Scholar

Bonacci, O., Patekar, M., Pola, M., Roje-Bonacci, T., 2020. Analyses of climate variations at four meteorological stations on remote islands in the Croatian part of the Adriatic Sea. Atmosphere, 11, 10, 1044. https://doi.org/10.3390/atmos11101044Search in Google Scholar

Bonacci, O., Trninić, D., Roje-Bonacci, T., 2008. Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrol. Process., 22, 7, 1014–1021. https://doi.org/10.1002/hyp.6975Search in Google Scholar

Boudreault, J., Bergeron, N.E., St-Hilaire, A., Chebana, F., 2019. Stream temperature modeling using functional regression models. JAWRA J. Am. Water Resour. Assoc., 55, 6, 1382–1400. https://doi.org/10.1111/1752-1688.12778Search in Google Scholar

Brilly, M., 2010. Danube River basin coding. In: Brilly, M. (Ed:) Hydrological Processes of the Danube River Basin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3423-6_4Search in Google Scholar

Caissie, D., 2006. The thermal regime of rivers: a review. Freshw. Biol., 51, 8, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.xSearch in Google Scholar

Caissie, D., El-Jabi, N., St-Hilaire, A., 1998. Stochastic modelling of water temperatures in a small stream using air to water relations. Can. J. Civ. Eng., 25, 2, 250–260. https://doi.org/10.1139/l97-091Search in Google Scholar

Caissie, D., El-Jabi, N., Turkkan, N., 2014. Stream water temperature modeling under climate change scenarios B1 & A2. Canadian Technical Report of Fisheries and Aquatic Sciences.Search in Google Scholar

Chang, X., Gao, M., Wang, Y., Hou, X., 2013. Seasonal autoregressive integrated moving average model for precipitation time series. J. Math. Stat., 8, 4, 500–505. https://doi.org/10.3844/jmssp.2012.500.505Search in Google Scholar

Chen, P., Niu, A., Liu, D., Jiang, W., Ma, B., 2018. Time series forecasting of temperatures using SARIMA: An example from Nanjing. IOP Conf. Ser. Mater. Sci. Eng., 394, 5, 052024. https://doi.org/10.1088/1757-899X/394/5/052024Search in Google Scholar

DeWeber, J.T., Wagner, T., 2014. A regional neural network ensemble for predicting mean daily river water temperature. J. Hydrol., 517, 187–200. https://doi.org/10.1016/j.jhydrol.2014.05.035Search in Google Scholar

Dokulil, M.T., 2018. Climate warming affects water temperature in the river Danube and tributaries – present and future perspectives. Geomorphologica Slovaca et Bohemica, 18, 57–63.Search in Google Scholar

Dugdale, S.J., Hannah, D.M., Malcolm, I.A., 2017. River temperature modelling: A review of process-based approaches and future directions. Earth-Sci. Rev., 175, 97–113. https://doi.org/10.1016/j.earscirev.2017.10.009Search in Google Scholar

Đurin, B., Kranjčić, N., Kanga, S., Singh, S.K., Sakač, N., Pham, Q.B., Hunt, J., Dogančič, D., Di Nunno, F., 2022. Application of Rescaled Adjusted Partial Sums (RAPS) method in hydrology–an overview. Advances in Civil and Architectural Engineering, 13, 25, 58–72. https://doi.org/10.13167/2022.25.6Search in Google Scholar

Feigl, M., Lebiedzinski, K., Herrnegger, M., Schulz, K., 2021. Machine learning methods for stream water temperature prediction (preprint). Rivers and lakes/modelling approaches. https://doi.org/10.5194/hess-2020-670Search in Google Scholar

Ficklin, D.L., Hannah, D.M., Wanders, N., Dugdale, S.J., England, J., Klaus, J., Kelleher, C., Khamis, K., Charlton, M.B., 2023. Re-thinking river water temperature in a changing, human-dominated world. Nat. Water, 1, 2, 125–128. https://doi.org/10.1038/s44221-023-00027-2Search in Google Scholar

Garbrecht, J., Fernandez, G.P., 1994. Visualization of trends and fluctuations in climatic records 1. JAWRA Journal of the American Water Resources Association, 30, 2, 297–306. https://doi.org/10.1111/j.1752-1688.1994.tb03292.xSearch in Google Scholar

Garner, G., Hannah, D., Watts, G., 2017. Climate change and water in the UK: Recent scientific evidence for past and future change. Prog. Phys. Geogr., 41, 2, 030913331667908. https://doi.org/10.1177/0309133316679082Search in Google Scholar

Gizinska, J., Sojka, M., 2023. How climate change affects river and lake water temperature in Central-West Poland – A case study of the Warta River Catchment. Atmosphere 14, 330. https://doi.org/10.3390/atmos14020330Search in Google Scholar

Graf, R., Aghelpour, P., 2021. Daily river water temperature prediction: A comparison between neural network and stochastic techniques. Atmosphere, 12, 9, 1154. https://doi.org/10.3390/atmos12091154Search in Google Scholar

Graf, R., Zhu, S., Sivakumar, B., 2019. Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. J. Hydrol., 578, 124115. https://doi.org/10.1016/j.jhydrol.2019.124115Search in Google Scholar

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M.E., Meng, J., Mulligan, M., Nilsson, C., Olden, J.D., Opperman, J.J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R.J.P., Snider, J., Tan, F., Tockner, K., Valdujo, P.H., van Soesbergen, A., Zarfl, C., 2019. Mapping the world’s free-flowing rivers. Nature, 569, 7755, 215–221. https://doi.org/10.1038/s41586-019-1111-9Search in Google Scholar

Hannah, D.M., Garner, G., 2015. A climate change report card for water Working Technical Paper. University of Birmingham, UK.Search in Google Scholar

Hebert, C., Caissie, D., Satish, M., El-Jabi, N., 2015. Predicting hourly stream temperatures using the equilibrium temperature model. J. Water Resour. Prot., 7, 322–338. https://doi.org/10.4236/jwarp.2015.74026Search in Google Scholar

Heggenes, J., Stickler, M., Alfredsen, K., Brittain, J. E., Adeva-Bustos, A., Huusko, A., 2021. Hydropower-driven thermal changes, biological responses and mitigating measures in northern river systems. River Res. Appl., 37, 5, 743–765. https://doi.org/10.1002/rra.3788Search in Google Scholar

HISTALP, n.d. URL http://www.zamg.ac.at/histalp/ (accessed Febr. 24, 2023)Search in Google Scholar

Hrdinka, T., Vlasák, P., Havel, L., Mlejnská, E., 2015. Possible impacts of climate change on water quality in streams of the Czech Republic. Hydrol. Sci.J., 60, 2, 192–201. https://doi.org/10.1080/02626667.2014.889830Search in Google Scholar

Jackson, F.L., Fryer, R.J., Hannah, D.M., Millar, C.P., Malcolm, I.A., 2018. A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Sci. Total Environ., 612, 1543–1558. https://doi.org/10.1016/j.scitotenv.2017.09.010Search in Google Scholar

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 2, 563–578. https://doi.org/10.1007/s10113-013-0499-2Search in Google Scholar

Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R.M., Casanueva, A., Christensen, O.B., Christensen, J.H., Coppola, E., De Cruz, L., Davin, E.L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M.A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J.J., Alemán, J.J.G., Gutiérrez, C., Gutiérrez, J.M., Güttler, I., Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones, R.G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P., Montávez, J.P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P., Prein, A.F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez, E., Sieck, K., Soares, P.M. M., Somot, S., Srnec, L., Sørland, S.L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K., Wulfmeyer, V., 2020. Regional climate downscaling over Europe: perspectives from the EUROCORDEX community. Reg. Environ. Change, 20, 2, 51. https://doi.org/10.1007/s10113-020-01606-9Search in Google Scholar

Jeong, D.I., Daigle, A., St-Hilaire, A., 2013. Development of a stochastic water temperature model and projection of future water temperature and extreme events in the Ouelle River Basin in Quebec, Canada. River Res. Appl., 29, 7, 805–821. https://doi.org/10.1002/rra.2574Search in Google Scholar

Keszeliová, A., Výleta, R., Danáčová, M., Hlavčová, K., Sleziak, P.,Gribovszki, Z., Szolgay, J., 2022. Detection of changes in evapotranspiration on a catchment scale under changing climate conditions in selected river basins of Slovakia. Slovak Journal of Civil Engineerin., 30, 4, 55–63. https://doi.org/10.2478/sjce-2022-0029Search in Google Scholar

Kwak, J., St-Hilaire, A., Chebana, F., 2016. A comparative study for water temperature modelling in a small basin, the Fourchue River, Quebec, Canada. Hydrol. Sci. J., 62. https://doi.org/10.1080/02626667.2016.1174334Search in Google Scholar

Leach, J.A., Moore, D., 2017. Insights on stream temperature processes through development of a coupled hydrologic and stream temperature model for forested coastal headwater catchments. Hydrol. Process., 31, 18, 3160–3177. https://doi.org/10.1002/hyp.11190Search in Google Scholar

Letcher, B.H., Hocking, D.J., O’Neil, K., Whiteley, A.R., Nislow, K.H., O’Donnell, M.J., 2016. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ, 4, 10, e1727. https://doi.org/10.7717/peerj.1727Search in Google Scholar

Liptay, Z., 2022. Neurohydrological prediction of water temperature and runoff time series. Acta Hydrologica Slovaca, 23, 2, 190–196. https://doi.org/10.31577/ahs-2022-0023.02.0021Search in Google Scholar

Li, Y.-T., Li, Y., Song, J.-M., Guo, Q.-H., Yang, C., Zhao, W.-J., Wang, J.-Y., Luo, J., Xu, Y.-N., Zhang, Q., Ding, X.-Y., Liang, Y., Li, Y.-N., Feng, Q.-L., Liu, P., Gao, H.-Y., Li, G., Zhao, S.-J., Zhang, Z.-S., 2022. Has breeding altered the light environment, photosynthetic apparatus, and photosynthetic capacity of wheat leaves? J. Exp. Bot., 73, 10, 3205–3220. https://doi.org/10.1093/jxb/erab495Search in Google Scholar

Malki, A., Atlam, E.-S., Hassanien, A.E., Ewis, A., Dagnew, G., Gad, I., 2022. SARIMA model-based forecasting required number of COVID-19 vaccines globally and empirical analysis of peoples’ view towards the vaccines. Alex. Eng. J., 61, 12, 12091–12110. https://doi.org/10.1016/j.aej.2022.05.051Search in Google Scholar

Mohseni, O., Stefan, H.G., Erickson, T.R., 1998. A nonlinear regression model for weekly stream temperatures. Water Resour. Res., 34, 10, 2685–2692. https://doi.org/10.1029/98WR01877Search in Google Scholar

Okhravi, S., Sokáč, M., Velísková, Y., 2022. Three-dimensional numerical modeling of water temperature distribution in the Rozgrund Reservoir, Slovakia. Acta Hydrologica Slovaca, 23, 2, 305–316. https://doi.org/10.31577/ahs-2022-0023.02.0035 Search in Google Scholar

Oktaviani, F., Miftahuddin, Setiawan, I., 2021. Forecasting sea surface temperature anomalies using the SARIMA ARCH/GARCH model. J. Phys.: Conf. Ser., 1882, 012020. https://doi.org/10.1088/1742-6596/1882/1/012020Search in Google Scholar

O’Sullivan, A.M., Devito, K.J., Ogilvie, J., Linnansaari, T., Pronk, T., Allard, S., Curry, R.A., 2020. Effects of topographic resolution and geologic setting on spatial statistical river temperature models. Water Resour. Res., 56, 12, e2020WR028122. https://doi.org/10.1029/2020WR028122Search in Google Scholar

Ouellet, V., St-Hilaire, A., Dugdale, S.J., Hannah, D.M., Krause, S., Proulx-Ouellet, S., 2020. River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Sci. Total Environ., 736, 139679. https://doi.org/10.1016/j.scitotenv.2020.139679Search in Google Scholar

Pekárová, P., 2009. Multiannual runoff variability in the upper Danube region. Doctoral (DrSc.) Thesis. IH SAS, Bratislava, 151 p. https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/084/41084384.pdfSearch in Google Scholar

Pekárová, P., Bačová Mitkova, V., Pekar, J., Garaj, M., 2022. Analysis and design values of minimum daily flows in the Ipeľ river basin. In: Interdisciplinary Approach in Current Hydrological Research. IH SAS, Bratislava, pp. 109–121.Search in Google Scholar

Pekárová, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., Skoda, P., 2008. Is the water temperature of the Danube River at Bratislava, Slovakia, rising? J. Hydrometeorol., 9, 5, 1115–1122. https://doi.org/10.1175/2008JHM948.1Search in Google Scholar

Piotrowski, A., Napiórkowski, M., Napiórkowski, J., Osuch, M., 2015. Comparing various artificial neural network types for water temperature prediction in rivers. J. Hydrol., 529, 302–315. https://doi.org/10.1016/j.jhydrol.2015.07.044Search in Google Scholar

Piotrowski, A.P., Napiorkowski, J.J., 2018. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method. J. Hydrol., 561, 395–412. https://doi.org/10.1016/j.jhydrol.2018.04.016Search in Google Scholar

Probst, E., Mauser, W., 2023. Climate change impacts on water resources in the Danube River Basin: A hydrological modelling study using EURO-CORDEX Climate Scenarios. Water, 15, 1, 8. https://doi.org/10.3390/w15010008Search in Google Scholar

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., Shen, C., 2021. Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data. Environ. Res. Lett., 16, 2, 024025. https://doi.org/10.1088/1748-9326/abd501Search in Google Scholar

Romanova, Y., Shakirzanova, Z., Ovcharuk, V., Todorova, O., Medvedieva, I., Ivanchenko, A., 2019. Temporal variation of water discharges in the lower course of the Danube River across the area from Reni to Izmail under the influence of natural and anthropogenic factors. Energetika, 65, 2–3. https://doi.org/10.6001/energetika.v65i2-3.4108Search in Google Scholar

Sapin, J., Rajagopalan, B., Saito, L., Caldwell, R.J., 2017. A K-Nearest neighbor based stochastic multisite flow and stream temperature generation technique. Environ. Model. 91, 87–94. https://doi.org/10.1016/j.envsoft.2017.02.005Search in Google Scholar

Schiemer, F., Guti, G., Keckeis, H., Staras, M., 2004. Ecological status and problems of the Danube River and its fish fauna: A review. In: Proc. Symposium on the management of large rivers for fisheries, 1, p. 273, FAO.Search in Google Scholar

Stagl, J.C., Hattermann, F.F., 2015. Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios. Water, 7, 11, 6139–6172. https://doi.org/10.3390/w7116139Search in Google Scholar

Stagl, J., Hattermann, F.F., 2016. Impacts of climate change on riverine ecosystems: Alterations of ecologically relevant flow dynamics in the Danube River and its major tributaries. Water, 8, 12, 566. https://doi.org/10.3390/w8120566Search in Google Scholar

Stančíková, A., 2010. Thermal and ice regimes of the Danube River and its tributaries. In: Hydrological Processes of the Danube River Basin: Perspectives from the Danubian Countries, pp. 259–291. https://doi.org/10.1007/978-90-481-3423-6_8Search in Google Scholar

Sutadian, A., Muttil, N., Yilmaz, A., Perera, B., 2016. Development of river water quality indices – a review. Environ. Monit. Assess., 188, 58. https://doi.org/10.1007/s10661-015-5050-0Search in Google Scholar

Tang, Ch., Garcia, V., 2023. Identifying stream temperature variation by coupling meteorological, hydrological, and water temperature models. Journal of the American Water Resources Association (JAWR), 59, 4, 665–680. https://doi.org/10.1111/1752-1688.13113Search in Google Scholar

Tavares, M.H., Cunha, A.H.F., Motta-Marques, D., Ruhoff, A. L., Fragoso, C.R., Munar, A.M., Bonnet, M.-P., 2020. Derivation of consistent, continuous daily river temperature data series by combining remote sensing and water temperature models. Remote Sens. Environ., 241, 111721. https://doi.org/10.1016/j.rse.2020.111721Search in Google Scholar

Vyshnevskyi, V., Shevchuk, S., 2021. Thermal regime of the Dnipro Reservoirs. J. Hydrol. Hydromech., 69, 3, 300–310. https://doi.org/10.2478/johh-2021-0016Search in Google Scholar

Vyshnevskyi, V., Shevchuk, S., 2023. Thermal regime of the Danube Delta and the adjacent lakes. J. Hydrol. Hydromech., 71, 3, 283–292. https://doi.org/10.2478/johh-2023-0015Search in Google Scholar

Wanders, N., van Vliet, M.T.H., Wada, Y., Bierkens, M.F.P., van Beek, L.P.H.R., 2019. High-resolution global water temperature modeling. Water Resour. Res., 55, 4, 2760–2778. https://doi.org/10.1029/2018WR023250Search in Google Scholar

WWF, 2002. Waterway Transport on Europe’s Lifeline, The Danube: Impacts, Threats and Opportunities. World Wide Fund for Nature, Vienna.Search in Google Scholar

Webb, B.W., 1996. Trends in stream and river temperature. Hydrol. Process., 10, 2, 205–226. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<205::AID-HYP358>3.0.CO;2-1Search in Google Scholar

Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E., Nobilis, F., 2008. Recent advances in stream and river temperature research. Hydrol. Process., 22, 7, 902–918. https://doi.org/10.1002/hyp.6994Search in Google Scholar

Webb, B.W., Nobilis, F., 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J., 52, 1, 74–85. https://doi.org/10.1623/hysj.52.1.74Search in Google Scholar

Yang, D., Peterson, A., 2017. River water temperature in relation to local air temperature in the Mackenzie and Yukon Basins. ARCTIC, 70, 1, 47–58. https://doi.org/10.14430/arctic4627Search in Google Scholar

Zhu, S., Bonacci, O., Oskoruš, D., Hadzima-Nyarko, M., Wu, S., 2019. Long term variations of river temperature and the influence of air temperature and river discharge: case study of Kupa River watershed in Croatia. J. Hydrol. Hydromech., 67, 4, 305–313. https://doi.org/10.2478/johh-2019-0019Search in Google Scholar

Zhu, S., Nyarko, E.K., Hadzima-Nyarko, M., 2018. Modelling daily water temperature from air temperature for the Missouri River. PeerJ, 6, e4894. https://doi.org/10.7717/peerj.4894Search in Google Scholar

eISSN:
1338-4333
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other