Open Access

An automated microinfiltrometer to measure small-scale soil water infiltration properties


Cite

Arriaga, F.J., Kornecki, T.S., Balkcom, K.S., Raper, R.L., 2010. A method for automating data collection from a double-ring infiltrometer under falling head conditions. Soil Use Manage., 26, 61-67.10.1111/j.1475-2743.2009.00249.xSearch in Google Scholar

Bachmann, J., Goebel, M.O., Woche, S.K., 2013. Small-scale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 61, 3-8.10.2478/johh-2013-0002Search in Google Scholar

Bowker, M.A., Eldridge, D.J., Val, J., Soliveres, S., 2013. Hydrology in a patterned landscape is co-engineered by soildisturbing animals and biological crusts. Soil Bio. Biochem., 61, 14-22.10.1016/j.soilbio.2013.02.002Search in Google Scholar

Casey, F.X.M., Derby, N.E., 2002. Improved design for an automated tension infiltrometer. Soil Sci. Soc. Am. J., 66, 64-67.10.2136/sssaj2002.6400Search in Google Scholar

Castiglione, P., Shouse, P.J., Mohanty, B., Hudson, D., van Genuchten, M.T., 2005. Improved tension infiltrometer for measuring low fluid flow rates in unsaturated fractured rock. Vadose Zone J., 4, 885-890.10.2136/vzj2004.0135Search in Google Scholar

Doerr, S.H., Ferreira, A.J.D., Walsh, R.P.D., Shakesby, R.A., Leighton-Boyce, G., Coelho, C.O.A., 2003. Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrol. Process., 17, 363-377.10.1002/hyp.1129Search in Google Scholar

Hallett, P., Young, I., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35-40.10.1046/j.1365-2389.1999.00214.xSearch in Google Scholar

Hallett, P., Gordon, D., Bengough, A., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597-603.10.1046/j.1469-8137.2003.00690.xSearch in Google Scholar

Hallett, P., Nunan, N., Douglas, J., Young, I., 2004. Millimeterscale spatial variability in soil water sorptivity: Scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352-358.10.2136/sssaj2004.3520Search in Google Scholar

Hallett, P.D., Karim, K.H., Bengough, A.G., Otten, W., 2013. Biophysics of the vadose zone: from reality to model systems and back again. Vadose Zone J., 12, 4, doi:10.2136/vzj2013.05.0090.10.2136/vzj2013.05.0090Search in Google Scholar

Johnson, D.O., Arriaga, F.J., Lowery, B., 2005. Automation of a falling head permeameter for rapid determination of hydraulic conductivity of multiple samples. Soil Sci. Soc. Am. J., 69, 828-833.10.2136/sssaj2004.0014NSearch in Google Scholar

Leeds-Harrison, P.B., Youngs, E.G., Uddin, B., 1994. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci., 45, 269-272.10.1111/j.1365-2389.1994.tb00509.xSearch in Google Scholar

Lichner, L., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104-1108.10.2478/s11756-013-0254-7Search in Google Scholar

Logsdon, S.D., Jaynes, D.B., 1996. Spatial variability of hydraulic conductivity in a cultivated field at different times. Soil Sci. Soc. Am. J., 60, 703-709.10.2136/sssaj1996.03615995006000030003xSearch in Google Scholar

Madsen, M.D., Chandler, D.G., 2007. Automation and use of mini disk infiltrometers. Soil Sci. Soc. Am. J., 71, 1469-1472.10.2136/sssaj2007.0009NSearch in Google Scholar

Milla, K., Kish, S., 2006. A low-cost microprocessor and infrared sensor system for automating water infiltration measurements. Comput. Electron. Agr., 53, 122-129.10.1016/j.compag.2006.05.001Search in Google Scholar

Moret, D., Lopez, M.V., Arrue, J.L., 2004. TDR application for automated water level measurement from Mariotte reservoirs in tension disc infiltrometers. J. Hydrol., 297, 229-235.10.1016/j.jhydrol.2004.04.003Search in Google Scholar

Moret-Fernandez, D., Gonzalez, C., Lampurlanes, J., Vicente, J., 2012. An automated disc infiltrometer for infiltration rate measurements using a microflowmeter. Hydrol. Process., 26, 240-245.10.1002/hyp.8184Search in Google Scholar

Or, D., Tuller, M., 1999. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resour. Res., 35, 3591-3605.10.1029/1999WR900262Search in Google Scholar

Pittman, D.D., Kohnke, H., 1942. An automatic self recording infiltrometer. Soil Sci., 53, 429-434.10.1097/00010694-194206000-00002Search in Google Scholar

Prieksat, M.A., Ankeny, M.D., Kaspar, T.C., 1992. Design for an automated, self-regulating, single-ring infiltrometer. Soil Sci. Soc. Am. J., 56, 1409-1411.10.2136/sssaj1992.03615995005600050013xSearch in Google Scholar

Spongrova, K., Kechavarzi, C., Dresser, M., Matula, S., Godwin, R.J., 2009. Development of an automated tension infiltrometer for field use. Vadose Zone J., 8, 810-817.10.2136/vzj2008.0135Search in Google Scholar

Thompson, J.A., Bell, J.C., Zanner, C.W., 1998. Hydrology and hydric soil extent within a mollisol catena in southeastern Minnesota. Soil Sci. Soc. Am. J., 62, 1126-1133.10.2136/sssaj1998.03615995006200040038xSearch in Google Scholar

Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259-1273.10.1029/WR004i006p01259Search in Google Scholar

Zhao, Y., Peth, S., Hallett, P., Wang, X., Giese, M., Gao, Y., Horn, R., 2011. Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics. Ecohydrol., 4, 36-48. 10.1002/eco.121Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other