1. bookVolume 55 (2023): Issue 1 (February 2023)
Journal Details
License
Format
Journal
eISSN
2640-396X
First Published
01 Jan 1969
Publication timeframe
1 time per year
Languages
English
Open Access

18S-NemaBase: Curated 18S rRNA Database of Nematode Sequences

Published Online: 21 Apr 2023
Volume & Issue: Volume 55 (2023) - Issue 1 (February 2023)
Page range: -
Received: 01 Aug 2022
Journal Details
License
Format
Journal
eISSN
2640-396X
First Published
01 Jan 1969
Publication timeframe
1 time per year
Languages
English

Biodiversity has been a topic at the forefront of ecology in recent decades due in part to global environmental changes, including climate warming, species invasions, and land conversion (Sutherland et al., 2012; Scheffers et al., 2016; Alberts et al., 2020) that threaten species with redistributions and extinctions (Bellard et al., 2012; Bellard et al., 2021). Studies of biodiversity have allowed for recognition of at-risk ecosystems and improved conservation strategies (Posa et al., 2011; Wintle et al., 2018). Both applied and basic research on these topics has primarily focused on macroscopic aboveground organisms such as plants and animals, while microscopic belowground biota, including microfauna, have received less attention. As direct and indirect connections between plants and all animals (aboveground and belowground) are important, the assessment of the total biodiversity within ecosystems is imperative (Colwell 1997; Bodelier 2011; Trevilline et al., 2019; Cameron et al., 2019). Unlike macrofauna, microfauna are difficult to study with the naked eye due to their small size and cryptic morphology, and hence require the use of advanced tools such as high-resolution microscopy and DNA metabarcoding (Bredtmann et al., 2017).

As one of the most abundant and diverse animals on the planet, nematodes are vital for ecosystem functioning (Hodda et al., 2009; van den Hoogen et al., 2020). Through their ubiquitous nature (De Mesel et al., 2004; Pascal et al., 2008; Heidemann et al., 2014; Majdi and Traunspurger 2015), diverse feeding habits (e.g., bacterial and fungal feeders, plant and animal parasites, omnivores, and predators), and positioning at various trophic levels, nematodes contribute to ecosystem functions such as primary productivity, decomposition, and overall nutrient cycling (Gerlach 1978; Bonaglia et al., 2014; Nascimento et al., 2012; Gebremikael et al., 2016; Schratzberger et al., 2019). In addition, plant and animal parasites can negatively impact agricultural production and human health. Precisely because of their diversity and roles in ecosystems, nematodes are well recognized as biological indicators of environmental change in terrestrial, marine, and freshwater ecosystems, including pollution, environmental disturbances, and climate warming (Hodda et al., 2009; Neher, 2010; Porazinska et al., 2021; Ottoni et al., 2022).

Traditionally, nematode identification has relied on the use of microscopy and analysis of morphological characteristics. However, this approach requires expertise and time, prohibiting the handling of the large number of samples necessary to study nematode diversity patterns and mechanisms at large scales. More importantly, although morphology has been considered the gold standard of nematode identification, it may be prone to subjectivity and errors, particularly because only <30,000 of the estimated ~1 – 10 million potential species have been described (Hodda, 2022).

While molecular barcoding using Sanger sequencing of rRNA and mitochondrial gene markers can be effective for identification of a few individual specimens from a small pool of species (e.g., Kiewnick et al., 2014; Pagan et al., 2015; Powers et al., 2021), this approach, like morphology, becomes inefficient and cost prohibitive as the diversity of nematodes and the number of analyzed samples increases (Porazinska et al., 2009; Geisen et al., 2018; Bubnoff 2008). A more recent solution to the limitations of low-throughput nematode identification has been offered by high-throughput nematode metabarcoding. One of the most important applications of this approach is its ability to rapidly detect and identify all nematode sequences present within a community across hundreds of samples. The 18S rRNA has been the most widely utilized DNA marker target, primarily focused on the hypervariable V4 – V8 regions (Ahmed et al., 2019; Herren et al., 2020; Müller et al., 2019; Porazinska et al., 2009, 2010; Sapkota and Nicolaisen 2015; Schenk et al., 2020; Sikder et al., 2020; Waeyenberge et al., 2019), with the V1 – V2 and V9 regions being used to a lesser degree (Müller et al., 2019; Porazinska et al., 2018; Waeyenberge et al., 2019; Schenk et al., 2019) (Fig. 1).

Figure 1

Genetic location of primers commonly used in nematode metabarcoding. Depicted is the entire rRNA gene with close ups of 18S rRNA gene with possible primers aligned below it. The 18S rRNA primers were aligned with Caenorhabditis elegans SSU (GenBank accession number: AY268117, X03680 and MN519140) to define the base pair locations (indicated in grey). References for primer sets available in Supplemental Table 1.

The identities and number of 3 most populated genera across nematode orders in SILVA v111, SILVA V138, and 18S-NemaBase. The list is sorted from the largest to smallest number of total representative sequences.

Number of Taxa
OrderGenusV111V13818S-NemaBase
RhabditidaMeloidogyne109218238
Caenorhabditis59228213
Bursaphelenchus77116117
TrichinellidaTrichinella12564563
Capillaria11616
Aonchotheca03030
DorylaimidaXiphinema148137137
Longidorus479292
Enchodelus91212
EnoplidaHalalaimus434343
Oxystomina262626
Oncholaimus222525
TriplonchidaParatrichodorus345757
Trichodorus264646
Tripyla213030
DesmodoridaLeptonemella11919
Robbea1099
Laxus499
PlectidaPlectus152424
Chronogaster577
Camacolaimus255
MonhysteridaEumonhystera31111
Monhystera388
Daptonema81010
MononchidaMylonchulus272727
Mononchus71111
Clarkus666
AraeolaimidaSabatieria899
Axonolaimus444
Ascolaimus444
MermithidaIsomermis999
Mermis244
Pheromermis022
DesmodoridaDesmoscolex122
Cyartonema111

Although nematode metabarcoding has expanded our understanding of nematode biodiversity (e.g., Porazinska et al., 2012; Geisen et al., 2018; Treonis et al., 2018; Santiago et al., 2021), the “identification” of nematodes from 18S metabarcoding datasets is still a challenge, because the task is directly proportional to the size and the quality of databases used to assign taxonomy to sequences (Zepeda et al., 2015). Unfortunately, the currently available 18S databases are severely underpopulated for nematodes (Macheriotou et al., 2019; Waeyenberge et al., 2019; Ahmed et al., 2019). For example, SILVA, the most popular database for nematodes (Quast et al., 2013; Yilmaz et al., 2014), contains only ~5,600 18S rRNA nematode sequences representing 2,734 species as of 2022, which is under 1% of the estimated 1 – 10 million nematode species (Hodda, 2022). Furthermore, out of these limited sequences, many are unverified (i.e., environmental and/or uncultured samples) or erroneous, characterized by unstandardized taxonomic strings, and classified using no longer accepted taxonomy (Fig. 2) (Waeyenberge et al., 2019), often resulting in an inability to recover the identity of queried sequences reliably and accurately.

Figure 2

An example of variation of taxonomic categories and ranks resulting in variable strings for Meloidogyne arenaria across the databases. The curated 18S-NemaBase includes standardized taxonomic ranks consisting of 13 Nematoda relevant categories (top row) and currently accepted classification as adopted by the WoRMS database. In contrast, the outdated in-house curated SILVA v111 and the current v138 consisted of variable strings and/or outdated classification (indicated in red) and missing relevant to nematodes taxonomic information (blank cells).

Some of the above problems can be resolved through the access to a curated (curation being a process by which reference sequences are verified, organized, and standardized) reference database. For example, PR2, the 18S rRNA curated database for Protista, has significantly improved taxonomic assignments for this eukaryotic group (Guillou et al., 2013). Unfortunately, no up-to-date curated 18S database devoted specifically to nematodes is currently publicly available. Hence, our goal was to develop and provide an 18S rRNA curated nematode-specific database as a shared public resource to simplify workflow and improve the quality of nematode identification from 18S metabarcoding data. To accomplish this, we collated all nematode reference sequences from the most current SILVA v138, standardized their taxonomic strings, and updated classifications to be compliant with WoRMS (World Register of Marine Species) formatted taxonomy based on the Nemys repository (Nemys 2022; Vandepitte et al., 2018; WoRMS Editorial Board 2022). We also removed redundancies and errors. To illustrate the benefits, we used a small subset (the family of Tobrilidae) of the nematode metabarcoding dataset from the Western Nebraska Sandhills (Gattoni et al., 2022), and compared nematode identities across different database versions: 1) the curated but outdated SILVA v111 (~2,500 nematode sequences released in 2012), 2) the most recent version of SILVA v138 (~5,600 nematode sequences released in 2020), and either 3) our curated 18S-NemaBase (~5,300 nematode sequences) in two versions where the length of reference sequences was unaltered (full length 18S sequences) (18S-NemaBase) or 4) trimmed to the region defined by the NF1/18Sr2b primers (18S-NemaBase trimmed). We then expanded the database by adding 191 18S rRNA Sanger reference sequences for nematodes isolated from our Sandhills projects (18S-NemaBase-supplemented) to demonstrate that even small database expansions can make a significant difference. In addition, we created a tree from the 18S-NemaBase to support phylogenetic analyses. Finally, to allow for database personalization, we provided documented code to add or modify database content. All resources including the 18S-NemaBase, tree, alignment, and code are available at the Worms et al. website (http://www.WormsEtAl.com/databases) and GitHub (https://github.com/WormsEtAl/18SNemaBase)

Materials and Methods
18S-NemaBase Curation

Two versions of the ARB-SILVA ribosomal RNA gene sequence database (Quast et al., 2012; Yilmaz et al., 2014) were used as base datasets for the development of 18S-NemaBase: the outdated but curated SILVA v111 (2,515 nematode sequences) and the most recently released SILVA v138 SSU Ref NR 99 (5,623 nematode sequences). Both versions were filtered to only include sequences labeled as nematodes. The taxonomic strings, sequences, and accession numbers were pulled from both files by using the bash ‘grep’ tool with ‘Nematoda’ set as the criterion for inclusion in the final file (for details of all mentioned functions and code see https://github.com/WormsEtAl/18SNemaBase The output was a list of accession numbers and the matching taxonomies and sequences.

Taxonomic Standardization

To address the issues associated with taxonomic inconsistencies (e.g., variable and incomplete taxonomic strings and outdated classification) (Fig. 2), we used the WoRMS taxonomic database (Vandepitte et al., 2018; WoRMS Editorial Board, 2022) as a template for the use of 13 standardized taxonomic ranks (domain, kingdom, phylum, class, subclass, order; suborder, infraorder, superfamily, family, subfamily, genus, species) and currently accepted nematode classification as present in the Nemys repository (Bezerra et al., 2022; De Ley and Blaxter, 2004; Nemys, 2022). Full taxonomies across all ranks were pulled from the WoRMS database using a custom Python 3 script (taxonToFullTaxonomy.py modified from Sevigny’s code at https://github.com/Joseph7e/Nematode-Mitochondrial-Metagenomics/blob/main/correct_ncbi_based_on_worms.py).To apply these full standardized taxonomies to our 18S-NemaBase, we first pulled all nematode reference sequence taxonomic strings (along with accession numbers) using the standard bash ‘awk’ tool, tagged the genus and species ranks, and then matched the genus rank to the corresponding WoRMS’s taxonomy with a custom Python script. Corrected taxonomic strings were then manually double-checked for errors (see below). The updated strings were matched back to their reference sequences using the accession numbers with the bash ‘grep’ and ‘sed’ tools.

Sequence Quality

To help eliminate redundancy, to reduce the overall computational and storage load of the database, and to identify potential errors, sequences were subjected to alignments and phylogenies. First, all sequences were grouped by subclass (i.e., Enoplia, Dorylaimia, and Chromadoria) and the Chromadoria were further grouped by orders (i.e., Araeolaimida, Chromadorida, Desmodorida, Desmoscolecida, Monhysterida, Plectida, and Rhabditida) using the ‘grep’ and ‘seqtk’ functions. Sequences were then aligned using the Muscle aligner (Edgar 2004), and Maximum-Likelihood trees using FastTree under a generalized time-reversible model were generated (Price et al., 2010). A custom dereplication bash script (extract_replicates_loop.sh) was used to identify any sequences that were deemed identical at a branch length of 0.0 threshold on the phylogenetic trees. Sequences that were deemed identical (i.e., 100% equivalent sequences and species identity) were further confirmed manually with Blast against the NCBI database to ensure the species and subspecies names were current. If multiple sequences provided a 100% match and were assigned to the exact same species/subspecies, only one was retained. However, if they matched different species/subspecies, both were retained. Sequences which were misplaced on trees or could not be confidently identified to the species level were deemed “poor-quality.” “Poor-quality” sequences were manually verified by examining their history, origin, and publication status using the NCBI database. Sequences that were unverified or incorrectly identified were removed.

After quality checking, MAFFT was used to align all the curated sequences of the 18S-NemaBase (Katoh and Standley 2013) and FastTree with default parameters was used to generate a Maximum-Likelihood tree as a reference for phylogenetic analyses. MAFFT was used for the alignment of all curated sequences instead of Muscle, as previously described, because it can better handle a large number of sequences. To allow for taxonomic assignments to sequences generated specifically by the NF1/18Sr2b primers, we also trimmed the alignment to the above barcoding region using MEGA v11 (Koichiro et al., 2021).

Database Testing

To illustrate the potential benefits of the 18S-NemaBase curation on assigned nematode identity and diversity assessments, we used a small subset (the family of Tobrilidae) of the nematode metabarcoding dataset from the Western Nebraska Sandhills collected in 2019 and generated with NF1/18Sr2b primers (Gattoni et al., 2022). These nematodes reside within sediments of five lakes (Island, Gimlet, Bean, Kokjohn and Border Lakes) spanning an alkalinity gradient (pH 7-10). For all details of data generation and processing see Gattoni et al. (2022), but briefly demultiplexed sequencing data were processed with Qiime2 v2021.4 using cutadapt to remove primers (Martin, 2011) and DADA2 for sequence joining, filtering, and checking for chimeras (Callahan et al., 2016). To isolate nematode sequences from other taxa, we first assigned taxonomy to amplicon sequence variants (ASVs) with BLAST against our older curated but outdated SILVA v111 and removed all non-nematode sequences. In addition, any nematode ASVs with low numbers of reads (<5), low percent ID (<90%), and low query coverage (<99%) were removed. Because the presence of the “BCP clade” in SILVA v138 predictably resulted in truncated taxonomy and no hits to Nematoda, for the sake of analyses, two versions of SILVA v138 were produced: one containing “BCP clade” (thus referred to as SILVA v138-unmodified), and one with “BCP clade” manually corrected (thus referred to as SILVA v138-modified). We then used this SILVA v111 filtered nematode dataset to assign taxonomy against the following: 1. SILVA v138-unmodified, 2. SILVA v138-modified, 3. 18S-NemaBase, 4. 18S-NemaBase trimmed to NF1/18Sr2b amplicon, and 5. 18S-NemaBase-supplemented. The 18S-NemaBase-supplemented included 191 additional 18S rRNA Sanger reference sequences generated for a select group of nematode species present in our samples. The individuals of these species were extracted and identified morphologically via an inverted microscope followed by single nematode molecular DNA barcoding at the University of Nebraska as described by Powers and Harris (1993). Validated Sanger sequences (via taxonomic assignment statistic indices at NCBI and tree building as described in Powers et al., 2017) were then added to the 18S-NemaBase. This resulted in 6 ASV tables (1. SILVA v111, 2. SILVA v138-unmodified, 3. SILVA v138-modified, 4. 18S-NemaBase, 5. 18S-NemaBase trimmed to NF1/18Sr2b amplicon, and 6. 18S-NemaBase-supplemented).

Results
Database Comparison

SILVA v111 and v138 contained 2,515 and 5,623 nematode sequences respectively, constituting ~0.3% of all eukaryotic sequences in both databases. As part of the curation process, 209 “Nematoda” sequences that could not be identified in either family, genus, or species level were removed. Of the removed sequences, 89 were “uncultured_eukaryota,” “uncultured_microeukaryota,” or “uncultured_metazoan,” and 99 were assembled metagenome sequences labelled as “nematodes.” In addition, we identified and removed a total of 391 potentially erroneous sequences (e.g., extremely short sequences with equal hits to a wide variety of taxa or clearly non-nematode sequences). In result, our curated 18S-NemaBase included 5,232 nematode sequences all classified to at least the family level. The 5,232 sequences represent 14 orders, 214 families, 668 genera, and 2,734 species.

All taxonomic strings in both SILVA versions required standardization (Fig. 2). In SILVA v111, there were two uninformative classification categories for nematodes (i.e., Opisthokonta, Metazoa) and most taxonomic ranks were missing (i.e., kingdom, class, order, suborder, infraorder, superfamily) (Fig. 2). In SILVA v138, there were multiple uninformative classification categories (i.e., Amorphea, Obazoa, Opisthokonta, Holozoa, Choanozoa, Metazoa, BCP clade, Bilateria, Ecdysozoa, Nematozoa) but again, the most informative nematode ranks were missing (i.e., kingdom, class, order, suborder, infraorder, and superfamily). Additionally, the presence of the “space” character in the “BCP clade” predictably resulted in truncated, incomplete taxonomic strings, and required correction to retrieve nematode identities. To prevent these limitations, all nematode taxonomic strings in our 18S-NemaBase have been standardized to the strings modeled in WoRMS.

Among 18S-NemaBase sequences, the majority belongs to Rhabditida (61%), followed by Trichinellida (12%), Dorylaimida (7%), Enoplida (7%), and Triplonchida (4%) (Fig. 3). A comparison between SILVA v111 and 18S-NemaBase indicates that the coverage for Rhabditida has increased 11-fold (384 vs. 3293 sequences, respectively) with the highest current representation of plant parasites (33.0%), followed by bacterial feeders (21.7%), animal parasites (22.1%), fungal feeders (14.0%), predators (4.6%) and root associates (4.6%) (Yeates et al., 1993). Additionally, the number of sequences for Triplonchida, Trichinellida, Enoplida, and Dorylaimida has increased 212-fold, 55-fold, 13-fold, and 8-fold, respectively. Overall, most orders experienced an increase of sequence representation, including Plectida, Araeolaimida, Monhysterida, Mononchida, and Mermithida, despite their general low coverage of <100 sequences per each clade in the 18S-NemaBase. Chromadorida was the only order that experienced the opposite pattern (2%), largely due to the removal of erroneous sequences and/or replacement of the outdated classification. Desmoscolecida and Dioctophymatida have been the most poorly represented orders, with only 3 and 2 sequences respectively.

Figure 3

Number of available 18S reference sequences for Nematoda at the order level within SILVA v111, v138, and 18S-NemaBase.

The increase of sequence representation from SILVA v111 to 18S-NemaBase (Table 1) was particularly significant for animal and plant parasitic nematodes. For example, the number of sequences representative of Trichinella species increased from 12 to 563. There were many taxa, however, that did not observe any increase. For example, Halalaimus, the most common genus in Enoplida represented in the database, remained represented by 43 sequences in all versions of the databases.

The number of nematode sequences for most orders were similar between SILVA v138 and the new 18S-NemaBase. The largest discrepancy applied to Rhabditida, where SILVA v138 contained 129 more sequences than 18S-NemaBase. These sequences were removed during quality assessment using taxonomic trees and manual checking, as they were designated as uncultured, environmental, or erroneous.

Effects on Metabarcoding Data

The 2019 Sandhills nematode ASVs assigned against 6 databases as described above were compared. The assignment from SILVA v138-unmodified without manually correcting for the “BCP clade” issue, resulted in not a single ASV assigned to “Nematoda” (Table 2). The assignments resulting from the 18S-NemaBase trimmed version were identical to the 18S-NemaBase non-trimmed full length sequence version; consequently, they are not discussed further. The 18S-NemaBase-supplemented contained an additional 191 unique Sanger sequences, of which 40 represented Tobrilidae, and as such, it is most relevant to the subset of our interest here.

The most distinguishing difference between the databases was associated with the number of undetermined identities, with 30 ASVs being assigned to “uncultured_nematode” and 16 ASVs to “Nematoda environmental samples” when using SILVA V111 and v138, respectively (Table 2). In contrast, when using 18S-NemaBase or 18S-NemaBase-supplemented, due to the curation process and removal of sequences with ambiguous identities, all ASVs were assigned to well-defined nematode taxonomies.

Moreover, we identified 18 ASVs (8% of total ASVs) with identities least defined by the SILVA v111 and best defined by the 18-NemaBase-supplemented. Out of these 18 ASVs, 13 belonged to the family Tobrilidae, a common nematode in aquatic systems and the most dominant component of our alkaline lakes. Out of the 13 ASVs, we identified 2 Tobrilidae species with SILVA v111, 4 with SILVA v138, 5 with 18S-NemaBase and 6 with 18S-NemaBase-supplemented with 4 matching Sandhill specific species (Table 2). In particular, three major species assigning to Sandhills specific nematodes comprised ~80% of the total Tobrilidae ASVs (Table 2). Most importantly, with the 18S-Nemabase, the time and effort to isolate/filter ASVs to taxa of specific interest (e.g., family of Tobrilidae), has been reduced to a matter of seconds.

Tobrilidae species from the Western Nebraska Sandhills dataset assigned by v111, v138, and 18S-NemaBase, and 18S-NemaBase-supplemented databases. The numbers represent how many distinct ASVs assigned to that species.

FamilyGenusSpeciesv111v138-unmodifiedv138-modified18S-NemaBase18S-NemaBase-supplemented
TobrilidaeBrevitobrilusBrevitobrilus sp. Female SALCI Border00003
TobrilidaeEpitobrilusEpitobrilus sp. Male SALCI Border00004
TobrilidaeEpitobrilusEpitobrilus stefanskii00550
TobrilidaeNeotobrilusNeotobrilus sp. Female SALCI Island00001
TobrilidaeSemitobrilusSemitobrilus cf. pellucidus 1 JH-201400330
TobrilidaeTobrilusTobrilus cf. gracilis 2 JH-201400110
TobrilidaeTobrilusTobrilus gracilis60000
TobrilidaeTobrilusTobrilus pellucidus00111
TobrilidaeTobrilusTobrilus sp. Female SALCI Island00001
TobrilidaeTobrilusTobrilus sp. ZQZ-2010a70033
Total ASV/species13/2010/413/513/6
Nematode_environmental sample001400
Nematode_uncultured eukaryote10300
Uncultured nematode290000
BCP Clade0178000
Discussion

The accuracy and precision of 18S rRNA nematode metabarcoding is dependent on an up-to-date and well populated reference database. The current 18S rRNA database options for taxonomic assignments are inundated with multiple problems including incomplete taxonomies, outdated classifications, and erroneous/redundant sequences. We collated and curated a nematode-specific 18S rRNA reference database to overcome these problems and to improve the analysis of nematode diversity from metabarcoding data.

The lack of a curated reference database has been repeatedly cited as one of the major obstacles in nematode metabarcoding analysis (Powers et al., 2021; Schenk et al., 2020; Macheriotou et al., 2019; Waeyenberge et al., 2019). As the largest and most comprehensive 18S database, SILVA has been popular among nematologists and others studying bacterial and eukaryotic communities (Quast et al., 2013). While the newest v138 database contains almost three times the number of nematode sequences in comparison to the older v111, the taxonomic strings associated with v138 are incomplete and/or outdated. Additionally, v138 has the added issue associated with the “BCP clade” classification, resulting in truncated strings prior to the rank for “Nematoda” and in the potential inability to recover any sequence assignments of nematode origin. Although our curated SILVA v111 has provided some level of curation (e.g., length of taxonomic strings), it has become outdated both in terms of its underrepresentation and currently accepted nematode classifications. To address these problems, we created a curated database containing the most up to date 18S rRNA sequence collection for nematodes.

The updated database allows nematologists and other scientists studying nematode biodiversity to classify a broader range of diversity more accurately in at least three main ways which we demonstrated using our own samples from the Nebraska Sandhills. First, without any need for manual corrections, we easily retrieved nematode sequences (all 178 nematode ASVs). Second, with standardized taxonomic ranks and updated classification, we were able to expediently isolate the focal group of the enoplid Tobrilidae (13 ASVs representing >100,000 total reads). Finally, sequences assigned to “uncultured_ eukaryotes” with v138 (3 ASVs representing ~32,000 reads thus excluded from analyses) were reclassified to Tobrilidae with 18S-NemaBase. With more species recovered, 18S-NemaBase has allowed for a more precise understanding of Tobrilidae diversity in the Sandhill alkaline lakes compared to SILVA databases.

By adding custom Sanger sequences obtained directly from nematodes isolated from the Sandhills ecosystem, we further improved taxonomic assignments with 9 out of 13 total Tobrilidae ASVs representing ~87,000 reads reassigning to the custom sequences and species. These results illustrate that to make significant leaps in understanding of nematode diversity, there is a dire need for curated databases.

Equally important is the need for the work of taxonomist experts to expand 18S-NemaBase to a wider range of the nematode phylogenetic tree, feeding traits, ecosystems, and habitats. Our comparison of the coverage of taxa in the databases illustrates this need very well. For example, within the 8 years separating SILVA v111 and SILVA v138, many taxa remained underrepresented, including key plant parasites like Xiphinema and most of the Enoplida, the earliest branching order. As the most numerous and abundant group of multicellular animals on the planet, current nematode databases present a very shallow understanding of their distribution, diversity, and ecology. In the most current assessment of global nematode distribution, van den Hoogen et al. (2019) pointed out that our current knowledge of nematode abundance and distribution is largely limited to Europe and nematode taxa with clear or potential economic impact. Indeed, within the order Rhabditida, 55.1% of total nematode sequences in 18S-NemaBase represent plant- or animal-parasitic species. However, the bacterial-feeding rather than plant- or animal-parasitic nematodes have been estimated to be the most abundant globally (van den Hoogen et al., 2019). Additionally, the most well-represented bacterial-feeding taxon in our 18S-NemaBase belongs to Caenorhabditis, which includes C. elegans, a model nematode for evo-devo studies (Brenner 1974; Baker and Woolard 2019). This is problematic because its overrepresentation occludes the identification of other bacterial-feeding nematodes that play significant roles in ecosystem functioning including nutrient cycling and decomposition, thus remaining undescribed and uncharacterized (de Mesel et al., 2004; Heidemann et al., 2014; Majdi & Traunspurger, 2015; Pascal et al., 2008).

In conclusion, well-populated databases have been at the core of genomics since its beginning (Varmus 2002). To begin to alleviate some of the most notorious problems for nematode metabarcoding, we produced the 18S-NemaBase (all resources available at Wormsetal.com) and showed its benefits by improving on the assessment of the diversity of Tobrilidae from the Western Nebraska Sandhills. To continue to improve on nematode diversity analyses in the future, we need to make a concerted effort toward 18S-NemaBase expansion.

Figure 1

Genetic location of primers commonly used in nematode metabarcoding. Depicted is the entire rRNA gene with close ups of 18S rRNA gene with possible primers aligned below it. The 18S rRNA primers were aligned with Caenorhabditis elegans SSU (GenBank accession number: AY268117, X03680 and MN519140) to define the base pair locations (indicated in grey). References for primer sets available in Supplemental Table 1.
Genetic location of primers commonly used in nematode metabarcoding. Depicted is the entire rRNA gene with close ups of 18S rRNA gene with possible primers aligned below it. The 18S rRNA primers were aligned with Caenorhabditis elegans SSU (GenBank accession number: AY268117, X03680 and MN519140) to define the base pair locations (indicated in grey). References for primer sets available in Supplemental Table 1.

Figure 2

An example of variation of taxonomic categories and ranks resulting in variable strings for Meloidogyne arenaria across the databases. The curated 18S-NemaBase includes standardized taxonomic ranks consisting of 13 Nematoda relevant categories (top row) and currently accepted classification as adopted by the WoRMS database. In contrast, the outdated in-house curated SILVA v111 and the current v138 consisted of variable strings and/or outdated classification (indicated in red) and missing relevant to nematodes taxonomic information (blank cells).
An example of variation of taxonomic categories and ranks resulting in variable strings for Meloidogyne arenaria across the databases. The curated 18S-NemaBase includes standardized taxonomic ranks consisting of 13 Nematoda relevant categories (top row) and currently accepted classification as adopted by the WoRMS database. In contrast, the outdated in-house curated SILVA v111 and the current v138 consisted of variable strings and/or outdated classification (indicated in red) and missing relevant to nematodes taxonomic information (blank cells).

Figure 3

Number of available 18S reference sequences for Nematoda at the order level within SILVA v111, v138, and 18S-NemaBase.
Number of available 18S reference sequences for Nematoda at the order level within SILVA v111, v138, and 18S-NemaBase.

List of primers depicted in Figure 1. Details include the primer name, author, and citation.

Primer Author Citation
F04 - R22 Fonseca et al., 2019 Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., and Creer, S. 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1(98). http://https://dol/10.1038/ncomms1095
SSU_F04 - SSU_R22 Blaxter et al., 1998 Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T., and Thomas, W. K. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392:71-75. http://https://dol/10.1038/32160
3NDf- 1132rmod Geisen et al., 2019 Geisen, S., Snoek, L. B., ten Hooven, F. C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C. W., Helder, J. A., and van den Putten, W. H. 2018. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods In Ecology and Evolution 9:1366-1378. http://https://dol/10.1111/2041 -210x.12999
Ek-NSF573 - EK-NSR951 Mangot et al., 2013 Mangot, J.-F., Domaizon, I., Taib, N., Marouni, N., Duffaud, E., Bronner, G., and Debroas, D. 2013. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environmental Microbiology 15: 1745-1758. http://https://dol.org/10.1111/1462-2920.12065
MMSF - MMSR Sidker et al., 2020 Sikder, M. M., Vestergård, M., Sapkota, R., Kyndt, T., and Nicolaisen, M. 2020. Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities. Diversity 12(388). http://https://dol.org/10.3390/d12100388
EcoF - EcoR Waeyenberge et al., 2020 Waeyenberge, L., Sutter, N. D., Viaene, N., and Haegeman, A. 2019. New Insights Into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity 11 (4):52. http://https://dol.org/10.3390/d11040052
18SILVOmidF - 18SILVOmidR Waeyenberge et al., 2020 Waeyenberge, L., Sutter, N. D., Viaene, N., and Haegeman, A. 2019. New Insights Into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity 11 (4):52. http://https://dol.org/10.3390/d11040052
1813F- 2646R Holterman et al., 2006 Holterman M., van der Wurff A., van den Elsen S., van Megen H., Bongers T., Holovachov O., Bakker J., and Helder J., 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23:1792-1800. http://https://doi/10.1093/molbev/msl044
NemF - 18Sr2b Porazinska et al., 2009 and Sapkota et al., 2015 Porazinska, D. L, Giblin-Davis, R. M., Faller, L, Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker, A. E., Sung, W., and Thomas, W. K. 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resoures 9:1439-50. http://https://doi.Org/10.1111/j.1755-0998.2009.02611; Sapkota, R., and Nicolaisen, M. 2015. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecology 12(15) http://https://doi.org/10.1186/s12898-014-0034-4
NemFopt - 18Sr2bopt Waeyenberge et al., 2020 Waeyenberge, L., Sutter, N. D., Viaene, N., and Haegeman, A. 2019. New insights into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity 11 (4):52. http://https://dol.org/10.3390/d11040052
F-1183 - R-1631 Müller et al., 2019 and Starke et al., 2016 Müller, C. A., Pereira, L. D., Lopes, C., Cares, J., Borges, L. G. D., Giongo, A., Graeff-Teixeira, C., and Morassutti. 2019. Meiofaunal diversity In the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. Forest Ecology and Management 453. http://https://doi.Org/10.1016/j.foreco.2019.117591; Starke, R., Kermer, R., Ullmann-Zeunert, L., Baldwin, I. T., Seifert, J., Bastida, F., von Bergen, M., and Jehmlich, N. 2016. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biology and Biochemistry 96:30-38. http://https://doi.Org/10.1016/j.soilbio.2016.01.009
NF1 - 18Sr2b Porazinska et al., 2009 Porazinska, D. L, Giblin-Davis, R. M., Faller, L, Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker, A. E., Sung, W., and Thomas, W. K. 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources 9:1439-50. http://https://doi.Org/10.1111/j.1755-0998.2009.02611
1391f- EukBr Amaral-Zettler et al., 2009 and Caporaso et al., 2012 Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W., and Huse, S. M. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7): 1 —9. http://https://doi.org/10.1371/journal.pone.0006372; Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L, Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., and Knight, R. 2012. Ultra-high-throughput microbial community analysis on the lllumina HiSeq and MiSeq platforms. ISME Journal 6(8):1621-1624. http://https://doi.Org/10.1038/ismej.2012.8

The identities and number of 3 most populated genera across nematode orders in SILVA v111, SILVA V138, and 18S-NemaBase. The list is sorted from the largest to smallest number of total representative sequences.

Number of Taxa
Order Genus V111 V138 18S-NemaBase
Rhabditida Meloidogyne 109 218 238
Caenorhabditis 59 228 213
Bursaphelenchus 77 116 117
Trichinellida Trichinella 12 564 563
Capillaria 1 16 16
Aonchotheca 0 30 30
Dorylaimida Xiphinema 148 137 137
Longidorus 47 92 92
Enchodelus 9 12 12
Enoplida Halalaimus 43 43 43
Oxystomina 26 26 26
Oncholaimus 22 25 25
Triplonchida Paratrichodorus 34 57 57
Trichodorus 26 46 46
Tripyla 21 30 30
Desmodorida Leptonemella 1 19 19
Robbea 10 9 9
Laxus 4 9 9
Plectida Plectus 15 24 24
Chronogaster 5 7 7
Camacolaimus 2 5 5
Monhysterida Eumonhystera 3 11 11
Monhystera 3 8 8
Daptonema 8 10 10
Mononchida Mylonchulus 27 27 27
Mononchus 7 11 11
Clarkus 6 6 6
Araeolaimida Sabatieria 8 9 9
Axonolaimus 4 4 4
Ascolaimus 4 4 4
Mermithida Isomermis 9 9 9
Mermis 2 4 4
Pheromermis 0 2 2
Desmodorida Desmoscolex 1 2 2
Cyartonema 1 1 1

Tobrilidae species from the Western Nebraska Sandhills dataset assigned by v111, v138, and 18S-NemaBase, and 18S-NemaBase-supplemented databases. The numbers represent how many distinct ASVs assigned to that species.

Family Genus Species v111 v138-unmodified v138-modified 18S-NemaBase 18S-NemaBase-supplemented
Tobrilidae Brevitobrilus Brevitobrilus sp. Female SALCI Border 0 0 0 0 3
Tobrilidae Epitobrilus Epitobrilus sp. Male SALCI Border 0 0 0 0 4
Tobrilidae Epitobrilus Epitobrilus stefanskii 0 0 5 5 0
Tobrilidae Neotobrilus Neotobrilus sp. Female SALCI Island 0 0 0 0 1
Tobrilidae Semitobrilus Semitobrilus cf. pellucidus 1 JH-2014 0 0 3 3 0
Tobrilidae Tobrilus Tobrilus cf. gracilis 2 JH-2014 0 0 1 1 0
Tobrilidae Tobrilus Tobrilus gracilis 6 0 0 0 0
Tobrilidae Tobrilus Tobrilus pellucidus 0 0 1 1 1
Tobrilidae Tobrilus Tobrilus sp. Female SALCI Island 0 0 0 0 1
Tobrilidae Tobrilus Tobrilus sp. ZQZ-2010a 7 0 0 3 3
Total ASV/species 13/2 0 10/4 13/5 13/6
Nematode_environmental sample 0 0 14 0 0
Nematode_uncultured eukaryote 1 0 3 0 0
Uncultured nematode 29 0 0 0 0
BCP Clade 0 178 0 0 0

Ahmed, M., Back, M. A., Prior, T., Karssen, G., Lawson, R., Adams, I., and Sapp, M. 2019. Metabarcoding of soil nematodes: The importance of taxonomic coverage and availability of reference sequences in choosing suitable marker(s). Metabarcoding and Metagenomics 3:e36408. http://https://doi.org/10.3897/mbmg.3.36408 Ahmed M. Back M. A. Prior T. Karssen G. Lawson R. Adams I. Sapp M. 2019 Metabarcoding of soil nematodes: The importance of taxonomic coverage and availability of reference sequences in choosing suitable marker(s) Metabarcoding and Metagenomics 3e36408 https://doi.org/10.3897/mbmg.3.36408Search in Google Scholar

Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J. A., and Pawlowsky-Glahn, V. 2000. Logratio analysis and compositional distance. Mathematical Geology, 32(3):271–275. http://https://doi.org/10.1023/A:1007529726302 Aitchison J. Barceló-Vidal C. Martín-Fernández J. A. Pawlowsky-Glahn V. 2000 Logratio analysis and compositional distance Mathematical Geology 323271275 https://doi.org/10.1023/A:1007529726302Search in Google Scholar

Alberts, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., and Ripple, W. J. 2021. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50:85–94. http://https://doi.org/10.1007/s13280-020-01318-8 Alberts J. S. Destouni G. Duke-Sylvester S. M. Magurran A. E. Oberdorff T. Reis R. E. Winemiller K. O. Ripple W. J. 2021 Scientists’ warning to humanity on the freshwater biodiversity crisis Ambio 508594 https://doi.org/10.1007/s13280-020-01318-8Search in Google Scholar

Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W., and Huse, S. M. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4:1–9. http://https://doi.org/10.1371/journal.pone.0006372 Amaral-Zettler L. A. McCliment E. A. Ducklow H. W. Huse S. M. 2009 A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes PLoS ONE 419 https://doi.org/10.1371/journal.pone.0006372Search in Google Scholar

Aivelo, T. 2018. Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology http://145(5):608-621.https://doi.org/10.1017/S0031182017000610 Aivelo T. 2018 Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals Parasitology 1455608-621https://doi.org/10.1017/S0031182017000610Search in Google Scholar

Baker, E. A., and Woollard, A. 2019. How weird is the worm? Evolution of the developmental gene toolkit in Caenorhabditis elegans. Journal of Developmental Biology 7:19. http://https://doi.org/10.3390/jdb7040019 Baker E. A. Woollard A. 2019 How weird is the worm? Evolution of the developmental gene toolkit in Caenorhabditis elegans Journal of Developmental Biology 719 https://doi.org/10.3390/jdb7040019Search in Google Scholar

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchcamp, F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15:365– 377. http://https://doi.org/10.1111/j.1461-0248.2011.01736 Bellard C. Bertelsmeier C. Leadley P. Thuiller W. Courchcamp F. 2012 Impacts of climate change on the future of biodiversity Ecology Letters 15365– 377 https://doi.org/10.1111/j.1461-0248.2011.01736Search in Google Scholar

Bellard, C., Berney, C., and Leclerc, C. 2021. Looming extinctions due to invasive species: Irreversible loss of ecological strategy and evolutionary history. Global Change Biology 27:4967–4979. http://https://doi.org/10.1111/gcb.15771 Bellard C. Berney C. Leclerc C. 2021 Looming extinctions due to invasive species: Irreversible loss of ecological strategy and evolutionary history Global Change Biology 2749674979 https://doi.org/10.1111/gcb.15771Search in Google Scholar

Bezerra, T. N., Deprez, T., Eisendle, U., Hodda, M., Holovachov, O., Leduc, D., Mokievsky, V., Peña Santiago, R., Pérez-García, J. A., Sharma, J., Smol, N., Tchesunov, A., Vanreusel, A., Venekey, V., and Zhao, Z. 2022. Nemys, World Database of Nematodes. In O. Bánki, Y. Roskov, M. Döring, G. Ower, L. Vandepitte, D. Hobern, D. Remsen, P. Schalk, R. E. DeWalt, M. Keping, J. Miller, T. Orrell, R. Aalbu, R. Adlard, E. M. Adriaenssens, C. Aedo, E. Aescht, N. Akkari, P. Alfenas-Zerbini, et al., Catalogue of Life Checklist (ver. (04/2022)). http://https://doi.org/10.48580/dfpk-4rf Bezerra T. N. Deprez T. Eisendle U. Hodda M. Holovachov O. Leduc D. Mokievsky V. Peña Santiago R. Pérez-García J. A. Sharma J. Smol N. Tchesunov A. Vanreusel A. Venekey V. Zhao Z. 2022 Nemys, World Database of Nematodes In O Bánki Y Roskov M Döring G Ower L Vandepitte D Hobern D Remsen P Schalk R. E DeWalt M Keping J Miller T Orrell R Aalbu R Adlard E. M Adriaenssens C Aedo E Aescht N Akkari P Alfenas-Zerbini et al Catalogue of Life Checklist (ver. (04/2022)) https://doi.org/10.48580/dfpk-4rfSearch in Google Scholar

Bodelier, P. L. E. 2011. Toward understanding, managing, and protecting microbial ecosystems. Frontiers in Microbiology 2:1–8. http://https://doi.org/10.3389/fmicb.2011.00080 Bodelier P. L. E. 2011 Toward understanding, managing, and protecting microbial ecosystems Frontiers in Microbiology 218 https://doi.org/10.3389/fmicb.2011.00080Search in Google Scholar

Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V. 2014. Meiofauna increases bacterial denitrification in marine sediments. Nature Communications 5:1–9. http://https://doi.org/10.1038/NCOMMS6133 Bonaglia S. Nascimento F. J. A. Bartoli M. Klawonn I. Brüchert V. 2014 Meiofauna increases bacterial denitrification in marine sediments Nature Communications 519 https://doi.org/10.1038/NCOMMS6133Search in Google Scholar

Bredtmann, C. M., Krücken, J., Murugaiyan, J., Kuzmina, T., and von Sanson-Himmelstjerna, G. 2017. Nematode species identification-current status, challenges, and future perspectives for cyathostomins. Frontiers in Cellular and Infection Microbiology 7:1–8. http://https://doi.org/10.3389/fcimb.2017.00283 Bredtmann C. M. Krücken J. Murugaiyan J. Kuzmina T. von Sanson-Himmelstjerna G. 2017 Nematode species identification-current status, challenges, and future perspectives for cyathostomins Frontiers in Cellular and Infection Microbiology 718 https://doi.org/10.3389/fcimb.2017.00283Search in Google Scholar

Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71-94. http://https://doi.org/10.1093/genetics/77.1.71 Brenner S. 1974 The genetics of Caenorhabditis elegans. Genetics 77 7194 https://doi.org/10.1093/genetics/77.1.71Search in Google Scholar

Bubnoff, A. 2008. Next-generation sequencing: The race is on. Cell 132(5):721–3. http://https://doi.org/10.1016/j.cell.2008.02.028 Bubnoff A. 2008 Next-generation sequencing: The race is on Cell 13257213 https://doi.org/10.1016/j.cell.2008.02.028Search in Google Scholar

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13:581–583. http://https://doi.org/10.1038/nmeth.3869 Callahan B. J. McMurdie P. J. Rosen M. J. Han A. W. Johnson A. J. A. Holmes S. P. 2016 DADA2: High-resolution sample inference from Illumina amplicon data Nature Methods 13581583 https://doi.org/10.1038/nmeth.3869Search in Google Scholar

Cameron, E. K., Martins, I. S., Lavelle, P., Mathieu, J., Tedersoo, L., Bahram, M., Gottschall, F., Guerra, C. A., Hines, J., Patoine, G., Siebert, J., Winter, M., Cesarz, S., Ferlian, O., Kreft, H., Lovejoy, T. E., Montanarella, L., Orgiazzi, A., Periera, H. M., Phillips, H. R. P., Settele, J., Wall, D. H., and Eisenhauer, N. 2019. Global mismatches in aboveground and belowground biodiversity. Conservation Biology 33:1187–1192. http://https://doi.org/10.1111/cobi.13311 Cameron E. K. Martins I. S. Lavelle P. Mathieu J. Tedersoo L. Bahram M. Gottschall F. Guerra C. A. Hines J. Patoine G. Siebert J. Winter M. Cesarz S. Ferlian O. Kreft H. Lovejoy T. E. Montanarella L. Orgiazzi A. Periera H. M. Phillips H. R. P. Settele J. Wall D. H. Eisenhauer N. 2019 Global mismatches in aboveground and belowground biodiversity Conservation Biology 3311871192 https://doi.org/10.1111/cobi.13311Search in Google Scholar

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley N., Gilbert, J. A., Smith, G., and Knight, R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6:1621– 1624. http://https://doi.org/10.1038/ismej.2012.8 Caporaso J. G. Lauber C. L. Walters W. A. Berg-Lyons D. Huntley J. Fierer N. Owens S. M. Betley J. Fraser L. Bauer M. Gormley N. Gilbert J. A. Smith G. Knight R. 2012 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms ISME Journal 61621– 1624 https://doi.org/10.1038/ismej.2012.8Search in Google Scholar

Colwell, R. R. 1997. Microbial diversity: the importance of exploration and conservation. Journal of Indian Microbiology and Biotechnology 18:302–307. http://https://doi.org/1 0.1038/sj.jim.2900390 Colwell R. R. 1997 Microbial diversity: the importance of exploration and conservation Journal of Indian Microbiology and Biotechnology 18302307 https://doi.org/10.1038/sj.jim.2900390Search in Google Scholar

De Ley, P., and Blaxter, M. 2004. A new system for Nematoda: Combining morphological characters with molecular trees, and translating clades into ranks and taxa. Nematology Monographs and Perspectives 2:633– 653. http://https://doi.org/10.1163/9789004475236_061 De Ley P. M Blaxter 2004 A new system for Nematoda: Combining morphological characters with molecular trees, and translating clades into ranks and taxa Nematology Monographs and Perspectives 2633– 653 https://doi.org/10.1163/9789004475236_061Search in Google Scholar

de Mesel, I., Derycke, S., Moens, T., van der Gucht, K., Vincx, M., and Swings, J. 2004. Top-down impact of bacterivorous nematodes on the bacterial community structure: A microcosm study. Environmental Microbiology 6:733–744. http://https://doi.org/10.1111/j.1462-2920.2004.00610.x I de Mesel S Derycke T Moens K van der Gucht Vincx M. Swings J. 2004 Top-down impact of bacterivorous nematodes on the bacterial community structure: A microcosm study Environmental Microbiology 6733744 https://doi.org/10.1111/j.1462-2920.2004.00610.xSearch in Google Scholar

Dixon, P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14:927–930. http://https://doi.org/10.1111/j.1654-1103.2003.tb02228.x Dixon P. 2003 VEGAN, a package of R functions for community ecology Journal of Vegetation Science 14927930 https://doi.org/10.1111/j.1654-1103.2003.tb02228.xSearch in Google Scholar

Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797. http://https://doi.org/10.1093/nar/gkh340 Edgar R. C. 2004 MUSCLE: Multiple sequence alignment with high accuracy and high throughput Nucleic Acids Research 3217921797 https://doi.org/10.1093/nar/gkh340Search in Google Scholar

Gattoni, K., Gendron, E. M. S., Borgmeier, A., McQueen, J. P., Mullin, P. G., Powers, K., Powers, T. O., and Porazinska, D. L. 2022. Context-dependent role of abiotic and biotic factors structuring nematode communities along two environmental gradients. Molecular Ecology 00:1–14. http://https://doi.org/10.1111/mec.16541 Gattoni K. Gendron E. M. S. Borgmeier A. McQueen J. P. Mullin P. G. Powers K. Powers T. O. Porazinska D. L. 2022 Context-dependent role of abiotic and biotic factors structuring nematode communities along two environmental gradients Molecular Ecology 00114 https://doi.org/10.1111/mec.16541Search in Google Scholar

Gebremikael, M. T., Steel, H., Buchan, D., Bert, W., and De Neve, S. 2016. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Scientific Reports 6:1–10. http://https://doi.org/10.1038/srep32862 Gebremikael M. T. Steel H. Buchan D. Bert W. De Neve S. 2016 Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions Scientific Reports 6110 https://doi.org/10.1038/srep32862Search in Google Scholar

Geisen, S., Snoek, L. B., ten Hooven, F. C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C. W., Helder, J. A., and van der Putten, W. H. 2018. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution 9(6):1366–1378. http://https://doi.org/10.1111/2041-210X.12999 Geisen S. Snoek L. B. ten Hooven F. C. Duyts H. Kostenko O. Bloem J. Martens H. Quist C. W. Helder J. A. van der Putten W. H. 2018 Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion Methods in Ecology and Evolution 9613661378 https://doi.org/10.1111/2041-210X.12999Search in Google Scholar

Gerlach, S. A. 1978. Oecologia in stimulating bacterial productivity. Oecologia 69:55–69. http://https://doi.org/10.1007/BF00376996 Gerlach S. A. 1978 Oecologia in stimulating bacterial productivity Oecologia 695569 https://doi.org/10.1007/BF00376996Search in Google Scholar

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., Del Campo, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A. L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., and Christen, R. 2013. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit. Nucleic Acids Research 41:D597–604. http://https://doi.org/10.1093/nar/gks1160 Guillou L. Bachar D. Audic S. Bass D. Berney C. Bittner L. Boutte C. Burgaud G. de Vargas C. Decelle J. Del Campo J. Dolan J. R. Dunthorn M. Edvardsen B. Holzmann M. Kooistra W. H. Lara E. Le Bescot N. Logares R. Mahé F. Massana R. Montresor M. Morard R. Not F. Pawlowski J. Probert I. Sauvadet A. L. Siano R. Stoeck T. Vaulot D. Zimmermann P. Christen R. 2013 The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit Nucleic Acids Research 41D597604 https://doi.org/10.1093/nar/gks1160Search in Google Scholar

Heidemann, K., Hennies, A., Schakowske, J., Blumenberg, L., Ruess, L., Scheu, S., and Maraun, M. 2014. Free-living nematodes as prey for higher trophic levels of forest soil food webs. OIKOS 123:1199–1211. http://https://doi.org/10.1111/j.1600-0706.2013.00872.x Heidemann K. Hennies A. Schakowske J. Blumenberg L. Ruess L. Scheu S. Maraun M. 2014 Free-living nematodes as prey for higher trophic levels of forest soil food webs OIKOS 12311991211 https://doi.org/10.1111/j.1600-0706.2013.00872.xSearch in Google Scholar

Herren, G., Habraken, J., Waeyenberge, L., Haegeman, A., Viaene, N., Cougnon, M., Reheul, D., Steel, H., and Bert, W. 2020. Effects of synthetic fertilizer and farm compost on soil nematode community in long-term crop rotation plots : A morphological and metabarcoding approach. PLOS ONE 15(3). http://https://doi.org/10.1371/journal.pone.0230153 Herren G. Habraken J. Waeyenberge L. Haegeman A. Viaene N. Cougnon M. Reheul D. Steel H. Bert W. 2020 Effects of synthetic fertilizer and farm compost on soil nematode community in long-term crop rotation plots : A morphological and metabarcoding approach PLOS ONE 153 https://doi.org/10.1371/journal.pone.0230153Search in Google Scholar

Hodda, M. E., Peters, L., and Traunspurger, W. 2009. Nematode diversity in terrestrial, freshwater aquatic and marine systems. Pp. 45–93 in M. J. Wilson, and T. Kakouli-Duarte, eds. Nematodes as environmental indicators. Wallingford, UK: CAB International. Hodda M. E. Peters L. Traunspurger W. 2009 Nematode diversity in terrestrial, freshwater aquatic and marine systems Pp 4593 in M. J Wilson T Kakouli-Duarte Nematodes as environmental indicators Wallingford, UK CAB InternationalSearch in Google Scholar

Hodda, M. 2022. Phylum Nematoda: a classification, catalogue and index of valid genera, with acensus of valid species. Zootaxa 5114(1):001–289. http://https://doi.org/10.11646/zootaxa.5114.1.1 Hodda M. 2022 Phylum Nematoda: a classification, catalogue and index of valid genera, with acensus of valid species Zootaxa 51141001289 https://doi.org/10.11646/zootaxa.5114.1.1Search in Google Scholar

Katoh, K., and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4):772–780. http://https://doi.org/10.1093/molbev/mst010 Katoh K. Standley D. M. 2013 MAFFT multiple sequence alignment software version 7: Improvements in performance and usability Molecular Biology and Evolution 304772780 https://doi.org/10.1093/molbev/mst010Search in Google Scholar

Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J. E., and Helder, J. 2014. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology 140:97–110. http://https://doi.org/10.1007/s10658-014-0446-1 Kiewnick S. Holterman M. van den Elsen S. van Megen H. Frey J. E. Helder J. 2014 Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives European Journal of Plant Pathology 14097110 https://doi.org/10.1007/s10658-014-0446-1Search in Google Scholar

Koichiro, T., Glen, S., and Sudhir, K. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022-3027. Koichiro T. Glen S. Sudhir K. 2021 MEGA11: Molecular Evolutionary Genetics Analysis version 11 Molecular Biology and Evolution 3830223027Search in Google Scholar

Macheriotou, L., Guilini, K., Bezerra, T. N., Tytgat, B., Nguyen, D. T., Phuong Nguyen, T. X., Noppe, F., Armenteros, M., Boufahja, F., Rigaux, A., Vanreusel, A., and Derycke, S. 2019. Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments. Ecology and Evolution 9(3):1211–1226. http://https://doi.org/10.1002/ece3.4814 Macheriotou L. Guilini K. Bezerra T. N. Tytgat B. Nguyen D. T. Phuong Nguyen T. X. Noppe F. Armenteros M. Boufahja F. Rigaux A. Vanreusel A. Derycke S. 2019 Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments Ecology and Evolution 9312111226 https://doi.org/10.1002/ece3.4814Search in Google Scholar

Majdi, N., and Traunspurger, W. 2015. Free-living nematodes in the freshwater food web: A r e v i e w . Journal of Nematology 47:28–44. Majdi N. Traunspurger W. 2015 Free-living nematodes in the freshwater food web: A r e v i e w Journal of Nematology 472844Search in Google Scholar

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17:10–12. http://https://doi.org/10.14806/ej.17.1.200 Martin M. 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet.Journal 171012 https://doi.org/10.14806/ej.17.1.200Search in Google Scholar

Müller, C. A., de Mattos Pereira, L., Lopes, C., Cares, J., dos Anjos Borges, L. G., Giongo, A., Graeff-Teixeira, C., and Morassutti, A. L. 2019. Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. Forest Ecology and Management 453:117591. http://https://doi.org/10.1016/j.foreco.2019.117591 Müller C. A. de Mattos Pereira L. Lopes C. Cares J. dos Anjos Borges L. G. Giongo A. Graeff-Teixeira C. Morassutti A. L. 2019 Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis Forest Ecology and Management 453117591 https://doi.org/10.1016/j.foreco.2019.117591Search in Google Scholar

Nascimento, F. J. A., Näslund, J., and Elmgren, N. 2012. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnology and Oceanography 57:338–346. http://https://doi.org/10.4319/lo.2012.57.1.0338 Nascimento F. J. A. Näslund J. Elmgren N. 2012 Meiofauna enhances organic matter mineralization in soft sediment ecosystems Limnology and Oceanography 57338346 https://doi.org/10.4319/lo.2012.57.1.0338Search in Google Scholar

Neher, D. A. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48:18.1–18.24. http://https://doi.org/10.1146/annurev-phyto-073009-114439 Neher D. A. 2010 Ecology of plant and free-living nematodes in natural and agricultural soil Annual Review of Phytopathology 4818.1–18.24 https://doi.org/10.1146/annurev-phyto-073009-114439Search in Google Scholar

Nemys eds. (2022). Nemys: World Database of Nematodes. Accessed at http://https://nemys.ugent.be on 2022-11-28. doi:10.14284/366 Nemys 2022 Nemys: World Database of Nematodes Accessed at https://nemys.ugent.be on 2022-11-28 10.14284/366Open DOISearch in Google Scholar

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Cáceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M. -H., Cunha, E. R., Smith, T., Stier, A., ter Braak, C. J. F., and Weedon, J. 2019. Vegan: Community ecology package. Available at: http://https://CRAN.R-project.org/package=vegan Oksanen J. Simpson G. L. Blanchet F. G. Kindt R. Legendre P. Minchin P. R. O’Hara R. B. Solymos P. Stevens M. H. H. Szoecs E. Wagner H. Barbour M. Bedward M. Bolker B. Borcard D. Carvalho G. Chirico M. De Cáceres M. Durand S. Evangelista H. B. A. FitzJohn R. Friendly M. Furneaux B. Hannigan G. Hill M. O. Lahti L. McGlinn D. Ouellette M. -H. Cunha E. R. Smith T. Stier A. ter Braak C. J. F. Weedon J. 2019 Vegan: Community ecology package Available at https://CRAN.R-project.org/package=veganSearch in Google Scholar

Ottoni, J. R., dos Santos Grignet, R., Barros, M. G. A., Bernal, S. P. F., Panatta, A. A. S., Lacerda-Júnior, G. V., Centurion, V. B., Delforno, T. P., Goncalves, C. C. S., and Passarini, M. R. Z. 2022. DNA metabarcoding from microbial communities recovered from stream and its potential for bioremediation processes. Current Microbiology 79:69–70. http://https://doi.org/10.1007/s00284-021-02752-x Ottoni J. R. dos Santos Grignet R. Barros M. G. A. Bernal S. P. F. Panatta A. A. S. Lacerda-Júnior G. V. Centurion V. B. Delforno T. P. Goncalves C. C. S. Passarini M. R. Z. 2022 DNA metabarcoding from microbial communities recovered from stream and its potential for bioremediation processes Current Microbiology 796970 https://doi.org/10.1007/s00284-021-02752-xSearch in Google Scholar

Pagan, C., Coyne, D., Carneiro, R., Kariuki, G., Luambana, N., Affokpon, A., and Williamson, V. M. 2015. Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology 105:350–357. http://https://doi.org/10.1094/PHYTO-08-14-0225-R Pagan C. Coyne D. Carneiro R. Kariuki G. Luambana N. Affokpon A. Williamson V. M. 2015 Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa Phytopathology 105350357 https://doi.org/10.1094/PHYTO-08-14-0225-RSearch in Google Scholar

Pascal, P. Y., Dupuy, C., Richard, P., Rzeznik-Orignac, J., and Niquil, N. 2008. Bacterivory of a mudflat nematode community under different environmental conditions. Marine Biology 154:671–682. http://https://doi.org/10.1007/s00227-008-0960-9 Pascal P. Y. Dupuy C. Richard P. Rzeznik-Orignac J. Niquil N. 2008 Bacterivory of a mudflat nematode community under different environmental conditions Marine Biology 154671682 https://doi.org/10.1007/s00227-008-0960-9Search in Google Scholar

Porazinska, D. L., Giblin-Davis, R. M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker A. E., Sung W., and Thomas, W. K. 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources 9:1439–1450. http://https://doi.org/10.1111/j.1755-0998.2009.02611.x Porazinska D. L. Giblin-Davis R. M. Faller L. Farmerie W. Kanzaki N. Morris K. Powers T. O. Tucker A. E. Sung W. Thomas W. K. 2009 Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity Molecular Ecology Resources 914391450 https://doi.org/10.1111/j.1755-0998.2009.02611.xSearch in Google Scholar

Porazinska, D. L., Giblin-Davis, R. M., Sung, W., and Thomas, W. K. 2010. Linking operational clustered taxonomic units (OCTUs) from parallel ultra sequencing (PUS) to nematode species. Zootaxa 2427:55–63. http://https://doi.org/10.11646/zootaxa.2427.1.6 Porazinska D. L. Giblin-Davis R. M. Sung W. Thomas W. K. 2010 Linking operational clustered taxonomic units (OCTUs) from parallel ultra sequencing (PUS) to nematode species Zootaxa 24275563 https://doi.org/10.11646/zootaxa.2427.1.6Search in Google Scholar

Porazinska, D. L., Giblin-Davis, R. M., Powers, T. O., and Thomas, W. K. 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PloS One 7:e44641. http://https://doi.org/10.1371/journal.pone.0044641 Porazinska D. L. Giblin-Davis R. M. Powers T. O. Thomas W. K. 2012 Nematode spatial and ecological patterns from tropical and temperate rainforests PloS One 7e44641 https://doi.org/10.1371/journal.pone.0044641Search in Google Scholar

Porazinska, D. L., Farrer, E. C., Spasojevic, M. J., Bueno De Mesquita, C. P., Sartwell, S. A., Smith, J. G., White, C. J., Suding, K. N., and Schmidt, S. K. 2018. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 9:1942–1952. http://https://doi.org/10.1002/ecy.2420 Porazinska D. L. Farrer E. C. Spasojevic M. J. Bueno De Mesquita C. P. Sartwell S. A. Smith J. G. White C. J. Suding K. N. Schmidt S. K. 2018 Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem Ecology 919421952 https://doi.org/10.1002/ecy.2420Search in Google Scholar

Porazinska, D. L., Bueno de Mesquita, C. P., Farrer, E. C., Spasojevic, M. J., Suding, K. N., and Schmidt, S. K. 2021. Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils. Soil Biology and Biochemistry 161:1–12. http://https://doi.org/10.1016/j.soilbio.2021.108380 Porazinska D. L. Bueno de Mesquita C. P. Farrer E. C. Spasojevic M. J. Suding K. N. Schmidt S. K. 2021 Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils Soil Biology and Biochemistry 161112 https://doi.org/10.1016/j.soilbio.2021.108380Search in Google Scholar

Posa, M. R. C., Wijedada, L. L. S., and Corlett, R. T. 2011. Biodiversity and conservation of tropical peat swamp forests. BioScience http://61:49–57.https://doi.org/10.1525/bio.2011.61.1.10 Posa M. R. C. Wijedada L. L. S. Corlett R. T. 2011 Biodiversity and conservation of tropical peat swamp forests BioScience 614957https://doi.org/10.1525/bio.2011.61.1.10Search in Google Scholar

Powers, T. O., and Harris, T. 1993. A polymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology 25:1–6. Powers T. O. Harris T. 1993 A polymerase chain reaction method for identification of five major Meloidogyne species Journal of Nematology 2516Search in Google Scholar

Powers, T. O., Harris, T. S., Higgins, R. S., Mullin, P. G., and Powers, K. S. 2017. An 18S rDNA perspective on the classification of Criconematoidea. Journal of Nematology 49(3): 236–244. Powers T. O. Harris T. S. Higgins R. S. Mullin P. G. Powers K. S. 2017 An 18S rDNA perspective on the classification of Criconematoidea Journal of Nematology 493 236244Search in Google Scholar

Powers, T. O., Harris, T. S., Higgins, R. S., Mullin, P. G., and Powers, K. S. 2021. Nematode biodiversity assessments need vouchered databases: A BOLD reference library for plant-parasitic nematodes in the superfamily Criconematoidea. Genome 64:232–241. http://https://doi.org/10.1139/gen-2019-0196 Powers T. O. Harris T. S. Higgins R. S. Mullin P. G. Powers K. S. 2021 Nematode biodiversity assessments need vouchered databases: A BOLD reference library for plant-parasitic nematodes in the superfamily Criconematoidea Genome 64232241 https://doi.org/10.1139/gen-2019-0196Search in Google Scholar

Price, M. N., Dehal, P. S., and Arkin, A. P. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. http://https://doi.org/10.1371/journal.pone.0009490 Price M. N. Dehal P. S. Arkin A. P. 2010 FastTree 2--approximately maximum-likelihood trees for large alignments PLoS One 53e9490 https://doi.org/10.1371/journal.pone.0009490Search in Google Scholar

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41:D590–D596. http://https://doi.org/10.1093/nar/gks1219 Quast C. Pruesse E. Yilmaz P. Gerken J. Schweer T. Yarza P. Peplies J. Glöckner F. O. 2013 The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools Nucleic Acids Research 41D590D596 https://doi.org/10.1093/nar/gks1219Search in Google Scholar

Santiago, A. D., Pereira, T. S., Mincks, S. L., and Bik, H. M. 2021. Dataset complexity impacts both MOTU delimitation and biodiversity estimates in eukaryotic 18S rRNA metabarcoding studies. Environmental DNA 4:363–384. http://https://doi.org/10.1101/2021.06.16.448699 Santiago A. D. Pereira T. S. Mincks S. L. Bik H. M. 2021 Dataset complexity impacts both MOTU delimitation and biodiversity estimates in eukaryotic 18S rRNA metabarcoding studies Environmental DNA 4363384 https://doi.org/10.1101/2021.06.16.448699Search in Google Scholar

Sapkota, R., and Nicolaisen, M. 2015. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecology 15:3. http://https://doi.org/10.1186/s12898-014-0034-4 Sapkota R. Nicolaisen M. 2015 High-throughput sequencing of nematode communities from total soil DNA extractions BMC Ecology 153 https://doi.org/10.1186/s12898-014-0034-4Search in Google Scholar

Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinni, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., and Watson, J. M. 2016. The broad footprint of climate change from genes to biomes to people. Science 354:6313. http://https://doi.org/10.1126/science Scheffers B. R. De Meester L. Bridge T. C. L. Hoffmann A. A. Pandolfi J. M. Corlett R. T. Butchart S. H. M. Pearce-Kelly P. Kovacs K. M. Dudgeon D. Pacifici M. Rondinni C. Foden W. B. Martin T. G. Mora C. Bickford D. Watson J. M. 2016 The broad footprint of climate change from genes to biomes to people Science 3546313 https://doi.org/10.1126/scienceSearch in Google Scholar

Schenk, J., Geisen, S., Kleinbölting, N., and Traunspurger, W. 2019. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding Metagenomics 3:e46704. http://https://doi.org/10.3897/mbmg.3.46704 Schenk J. Geisen S. Kleinbölting N. Traunspurger W. 2019 Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth Metabarcoding Metagenomics 3e46704 https://doi.org/10.3897/mbmg.3.46704Search in Google Scholar

Schratzberger, M., Holterman, M., van Oevelen, D., and Helder, J. 2019. A worm’s world: Ecological flexibility pays off for free-living nematodes in sediments and soils. BioScience 69:867–876. http://https://doi.org/10.1093/biosci/biz120 Schratzberger M. Holterman M. van Oevelen D. Helder J. 2019 A worm’s world: Ecological flexibility pays off for free-living nematodes in sediments and soils BioScience 69867876 https://doi.org/10.1093/biosci/biz120Search in Google Scholar

Sikder, M. M., Vestergård, M., Sapkota, R., Kyndt, T., and Nicolaisen, M. 2020. Evaluation of metabarcoding primers for analysis of soil nematode communities. Diversity 12(10):388. http://https://doi.org/10.3390/d12100388 Sikder M. M. Vestergård M. Sapkota R. Kyndt T. Nicolaisen M. 2020 Evaluation of metabarcoding primers for analysis of soil nematode communities Diversity 1210388 https://doi.org/10.3390/d12100388Search in Google Scholar

Sutherland, W. J., Freckleton, R. P., Godfray, C. J., Beissinger, S. R., Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T., Emmerson, M. C., Hails, R. S., Hays, G. C., Hodgson D. J., Hutchings, M. J., Johnson, D., Jones, J. P. G., Keeling, M. J., Kokko, H., Kunin, W. E., Lambin, X., Lewis, O. T., Malhi, Y., Meiszkowska, N., Thompson, K., Travis, J. M. J., Turnbull, L. A., Wardle, D. A., and Wiegand, T. 2012. Identification of 100 fundamental ecological questions. Journal of Ecology 101:58–67. http://https://doi.org/10.1111/1365-2745.12025 Sutherland W. J. Freckleton R. P. Godfray C. J. Beissinger S. R. Benton T. Cameron D. D. Carmel Y. Coomes D. A. Coulson T. Emmerson M. C. Hails R. S. Hays G. C. Hodgson D. J. Hutchings M. J. Johnson D. Jones J. P. G. Keeling M. J. Kokko H. Kunin W. E. Lambin X. Lewis O. T. Malhi Y. Meiszkowska N. Thompson K. Travis J. M. J. Turnbull L. A. Wardle D. A. Wiegand T. 2012 Identification of 100 fundamental ecological questions Journal of Ecology 1015867 https://doi.org/10.1111/1365-2745.12025Search in Google Scholar

Treonis, A. M., Unangst, S. K., Kepler, R. M., Buyer, J. S., Cavigelli, M. A., Mirsky, S. B., and Maul, J. E. 2018. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Scientific Reports 8:2004. http://https://doi.org/10.1038/s41598-018-20366-5 Treonis A. M. Unangst S. K. Kepler R. M. Buyer J. S. Cavigelli M. A. Mirsky S. B. Maul J. E. 2018 Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches Scientific Reports 82004 https://doi.org/10.1038/s41598-018-20366-5Search in Google Scholar

Trevelline, B. K., Fontaine, S. S., Hartup, B. K., and Kohl, K. H. 2019. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proceeding of the Royal Society B: Biological Science 286:1–9. http://https://doi.org/10.1098/rspb.2018.2448 Trevelline B. K. Fontaine S. S. Hartup B. K. Kohl K. H. 2019 Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices Proceeding of the Royal Society B: Biological Science 28619 https://doi.org/10.1098/rspb.2018.2448Search in Google Scholar

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J., and Crowther, T. W. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572:194–198. http://https://doi.org/10.1038/s41586-019-1418-6 J van den Hoogen S Geisen D Routh H Ferris W Traunspurger D. A Wardle R. G. M de Goede B. J Adams W Ahmad W. S Andriuzzi R. D Bardgett M Bonkowski R Campos-Herrera J. E Cares T Caruso L de Brito Caixeta X Chen S. R Costa R Creamer J Mauro da Cunha Castro M Dam D Djigal M Escuer B. S Griffiths C Gutiérrez K Hohberg D Kalinkina P Kardol A Kergunteuil G Korthals V Krashevska A. A Kudrin Q Li W Liang M Magilton M Marais J. A. R Martín E Matveeva E. H Mayad C Mulder P Mullin R Neilson T. A. D Nguyen U. N Nielsen H Okada J. E. P Rius K Pan V Peneva L Pellissier J Carlos Pereira da Silva C Pitteloud T. O Powers K Powers C. W Quist S Rasmann S. S Moreno S Scheu H Setälä A Sushchuk A. V Tiunov J Trap W van der Putten M Vestergård C Villenave L Waeyenberge D. H Wall R Wilschut D. G Wright J Yang T. W Crowther 2019 Soil nematode abundance and functional group composition at a global scale Nature 572194198 https://doi.org/10.1038/s41586-019-1418-6Search in Google Scholar

van den Hoogen, J., Geisen, S., Wall, D. H., Wardle, D. A., Traunspurger, W., de Goede, R. G. M., Adams, B. J., Ahmad, W., Ferris, H., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., da Cunha e Castro, J. M., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mzough, E., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., da Silva, J. C. P., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., Vestergård, M., Villenave, C., Waeyenberge, L., Wilschut, R. A., Wright, D. G., Keith, A. M., Yang, J., Schmidt, O., Bouharroud, R., Ferji, Z., van der Putten, W. H., Routh, D., and Crowther, T. W. 2020. A global database of soil nematode abundance and functional group composition. Scientific Data 7:103. http://https://doi.org/10.1038/s41597-020-0437-3 J van den HoogenS Geisen D. H Wall D. A Wardle W Traunspurger R. G. M de Goede B. J Adams W AhmadH Ferris R. D Bardgett M BonkowskiR Campos-Herrera J. E Cares T CarusoL de Brito CaixetaX Chen S. R Costa R Creamer J. M da Cunha e Castro M DamD DjigalM Escuer B. S Griffiths C GutiérrezK HohbergD KalinkinaP KardolA KergunteuilG KorthalsV Krashevska A. A Kudrin Q LiW LiangM MagiltonM Marais J. A. R Martín E Matveeva E. H Mayad E MzoughC MulderP MullinR Neilson T. A. D Nguyen U. N Nielsen H Okada J. E. P Rius K PanV PenevaL Pellissier J. C. P da Silva C Pitteloud T. O Powers K Powers C. W Quist S Rasmann S. S Moreno S ScheuH SetäläA Sushchuk A. V Tiunov J TrapM VestergårdC VillenaveL Waeyenberge R. A Wilschut D. G Wright A. M Keith J YangO SchmidtR BouharroudZ Ferji W. H van der Putten D Routh T. W Crowther 2020 A global database of soil nematode abundance and functional group composition Scientific Data 7103 https://doi.org/10.1038/s41597-020-0437-3Search in Google Scholar

Vandepitte, L., Vanhoorne, B., Decock, W., Vranken, S., Lanssens, T., Dekeyzer, S., Verfaille, K., Horton, T., Kroh, A., Hernandez, F., and Mees, J. 2018. A decade of the World Register of Marine Species – General insights and experiences from the Data Management Team: Where are we, what have we learned and how can we continue? PLOS ONE 13(4): e0194599. http://https://doi.org/10.1371/journal.pone.0194599 Vandepitte L. Vanhoorne B. Decock W. Vranken S. Lanssens T. Dekeyzer S. Verfaille K. Horton T. Kroh A. Hernandez F. Mees J. 2018 A decade of the World Register of Marine Species – General insights and experiences from the Data Management Team: Where are we, what have we learned and how can we continue? PLOS ONE 134 e0194599 https://doi.org/10.1371/journal.pone.0194599Search in Google Scholar

Varmus, H. 2002. Genomic empowerment: the importance of public databases. Nature 32:3. http://https://doi.org/10.1038/ng963 Varmus H. 2002 Genomic empowerment: the importance of public databases Nature 323 https://doi.org/10.1038/ng963Search in Google Scholar

Waeyenberge, L., de Sutter, N., Viaene, N., and Haegeman, A. 2019. New insights into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity 11(4):52. http://https://doi.org/10.3390/d11040052 Waeyenberge L. de Sutter N. Viaene N. Haegeman A. 2019 New insights into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities Diversity 11452 https://doi.org/10.3390/d11040052Search in Google Scholar

Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., Moilanen, A., Gordon, A., Lentini, P. E., Cadenhead, N. C. R., and Bekessy, S. A. 2018. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. PNAS 116:909– 914. http://https://doi.org/10.1073/pnas.1813051115 Wintle B. A. Kujala H. Whitehead A. Cameron A. Veloz S. Kukkala A. Moilanen A. Gordon A. Lentini P. E. Cadenhead N. C. R. Bekessy S. A. 2018 Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity PNAS 116909– 914 https://doi.org/10.1073/pnas.1813051115Search in Google Scholar

Workentine, M. L., Chen, R., Zhu, S., Gavriliuc, S., Shaw, N., de Rijke, J., Reman, E. M., Avramenko, R. M., Wit, J., Poissant, J., and Gilleard, J. S. 2020. A database for ITS2 sequences from nematodes. BMC Genetics 21(74). http://https://doi.org/10.1186/s12863-020-00880-0 Workentine M. L. Chen R. Zhu S. Gavriliuc S. Shaw N. de Rijke J. Reman E. M. Avramenko R. M. Wit J. Poissant J. Gilleard J. S. 2020 A database for ITS2 sequences from nematodes BMC Genetics 2174 https://doi.org/10.1186/s12863-020-00880-0Search in Google Scholar

WoRMS Editorial Board. 2022. World Register of Marine Species. http://https://doi.org/10.14284/170 WoRMS Editorial Board. 2022 World Register of Marine Species https://doi.org/10.14284/170Search in Google Scholar

Yeates, G. W., Bongers, T., de Goede, R. G. M., Freckman, D. W., and Georgieva, S. S. 199). Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 25:315–331. Yeates G. W. Bongers T. de Goede R. G. M. Freckman D. W. Georgieva S. S. 199) Feeding habits in soil nematode families and genera-an outline for soil ecologists Journal of Nematology 25315331Search in Google Scholar

Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J.,Ludwig, W., and Glöckner, F. O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research 42:643–648. http://https://doi.org/10.1093/nar/gkt1209 Yilmaz P. Parfrey L. W. Yarza P. Gerken J. Pruesse E. Quast C. Schweer T. Peplies J.Ludwig W. Glöckner F. O. 2014 The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks Nucleic Acids Research 42643648 https://doi.org/10.1093/nar/gkt1209Search in Google Scholar

Zepeda Mendoza, M. L., Sicheritz-Ponten, T., and Gilbert, M. T. P. 2015. Environmental genes and genomes: Understanding the differences and challenges in the approaches and software for their analyses. Briefings in Bioinformatics 16:745–758. http://https://doi.org/10.1093/bib/bbv001 M. L Zepeda Mendoza T Sicheritz-Ponten M.T. P Gilbert 2015 Environmental genes and genomes: Understanding the differences and challenges in the approaches and software for their analyses Briefings in Bioinformatics 16745758 https://doi.org/10.1093/bib/bbv001Search in Google Scholar

Recommended articles from Trend MD