Cite

Nicander I, Ollmar S. Electrical Bioimpedance Related to Structural Differences and Reactions in Skin and Oral Mucosa. Ann New York Acad Sci. 1999;873(1):221–6. https://doi.org/10.1111/j.1749-6632.1999.tb09470.x Nicander I Ollmar S. Electrical Bioimpedance Related to Structural Differences and Reactions in Skin and Oral Mucosa . Ann New York Acad Sci . 1999 ; 873 ( 1 ): 221 6 . https://doi.org/10.1111/j.1749-6632.1999.tb09470.x Search in Google Scholar

Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng. 2021;5(4). https://doi.org/10.1063/5.0064529 Abe Y Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices . APL Bioeng . 2021 ; 5 ( 4 ). https://doi.org/10.1063/5.0064529 Search in Google Scholar

Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Quantification of dermis sodium concentration in skin layers by power spectral density drop of square-wave electrical impedance spectroscopy (PSDd-sEIS). Meas Sci Technol. 2023;34(7):74006. https://doi.org/10.1088/1361-6501/acc752 Rifai IN Baidillah MR Wicaksono R Akita S Takei M. Quantification of dermis sodium concentration in skin layers by power spectral density drop of square-wave electrical impedance spectroscopy (PSDd-sEIS) . Meas Sci Technol . 2023 ; 34 ( 7 ): 74006 . https://doi.org/10.1088/1361-6501/acc752 Search in Google Scholar

Uchiyama T, Ishigame S, Niitsuma J, Aikawa Y, Ohta Y. Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique. J Tissue Viability. 2008;17(4):110–4. https://doi.org/10.1016/j.jtv.2008.01.002 Uchiyama T Ishigame S Niitsuma J Aikawa Y Ohta Y. Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique . J Tissue Viability . 2008 ; 17 ( 4 ): 110 4 . https://doi.org/10.1016/j.jtv.2008.01.002 Search in Google Scholar

Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93. https://doi.org/10.1016/j.det.2017.06.009 Braun RP Mangana J Goldinger S French L Dummer R Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis . Dermatol Clin . 2017 ; 35 ( 4 ): 489 93 . https://doi.org/10.1016/j.det.2017.06.009 Search in Google Scholar

Nyström J, Lindholm-Sethson B, Stenberg L, Ollmar S, Eriksson JW, Geladi P. Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses. Med Biol Eng Comput. 2003;41(3):324–9. https://doi.org/10.1007/BF02348438 Nyström J Lindholm-Sethson B Stenberg L Ollmar S Eriksson JW Geladi P. Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses . Med Biol Eng Comput . 2003 ; 41 ( 3 ): 324 9 . https://doi.org/10.1007/BF02348438 Search in Google Scholar

Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br J Dermatol. 1995;132(5):718–24. https://doi.org/10.1111/j.1365-2133.1995.tb00716.x Nicander I Ollmar S Rozell BL Eek A Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate . Br J Dermatol . 1995 ; 132 ( 5 ): 718 24 . https://doi.org/10.1111/j.1365-2133.1995.tb00716.x Search in Google Scholar

Emtestam L, Ollmar S. Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mi Id irritant contact dermatitis. Contact Dermatitis. 1993;28(2):104–8. https://doi.org/10.1111/j.1600-0536.1993.tb03352.x Emtestam L Ollmar S. Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mi Id irritant contact dermatitis . Contact Dermatitis . 1993 ; 28 ( 2 ): 104 8 . https://doi.org/10.1111/j.1600-0536.1993.tb03352.x Search in Google Scholar

Martinsen ØG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Ski Res Technol. 1999;5(3):179–81. https://doi.org/10.1111/j.1600-0846.1999.tb00128.x Martinsen ØG Grimnes S Haug E. Measuring depth depends on frequency in electrical skin impedance measurements . Ski Res Technol . 1999 ; 5 ( 3 ): 179 81 . https://doi.org/10.1111/j.1600-0846.1999.tb00128.x Search in Google Scholar

Arpaia P, Cesaro U, Moccaldi N. A bioimpedance meter to measure drug in transdermal delivery. IEEE Trans Instrum Meas. 2018;67(10):2324–31. https://doi.org/10.1109/TIM.2018.2817399 Arpaia P Cesaro U Moccaldi N. A bioimpedance meter to measure drug in transdermal delivery . IEEE Trans Instrum Meas . 2018 ; 67 ( 10 ): 2324 31 . https://doi.org/10.1109/TIM.2018.2817399 Search in Google Scholar

Andreasen N, Crandall H, Brimhall O, Miller B, Perez-Tamayo J, Martinsen OG, et al. Skin Electrical Resistance as a Diagnostic and Therapeutic Biomarker of Breast Cancer Measuring Lymphatic Regions. IEEE Access. 2021;9:152322–32. https://doi.org/10.1109/ACCESS.2021.3123569 Andreasen N Crandall H Brimhall O Miller B Perez-Tamayo J Martinsen OG Skin Electrical Resistance as a Diagnostic and Therapeutic Biomarker of Breast Cancer Measuring Lymphatic Regions . IEEE Access . 2021 ; 9 :152322 32 . https://doi.org/10.1109/ACCESS.2021.3123569 Search in Google Scholar

Gessert N, Bengs M, Schlaefer A. Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models. In: Medical Imaging 2020: Computer-Aided Diagnosis. SPIE; 2020. p. 265–71. https://doi.org/10.1117/12.2548974 Gessert N Bengs M Schlaefer A. Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models . In: Medical Imaging 2020: Computer-Aided Diagnosis . SPIE ; 2020 . p. 265 71 . https://doi.org/10.1117/12.2548974 Search in Google Scholar

Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J Biomed Heal informatics. 2018;23(2):538–46. https://doi.org/10.1109/JBHI.2018.2824327 Kawahara J Daneshvar S Argenziano G Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets . IEEE J Biomed Heal informatics . 2018 ; 23 ( 2 ): 538 46 . https://doi.org/10.1109/JBHI.2018.2824327 Search in Google Scholar

Barragán-Moreno A, Schaltz E, Gismero A, Stroe DI. Capacity State-of-Health Estimation of Electric Vehicle Batteries Using Machine Learning and Impedance Measurements. Electron. 2022;11(9). https://doi.org/10.3390/electronics11091414 Barragán-Moreno A Schaltz E Gismero A Stroe DI. Capacity State-of-Health Estimation of Electric Vehicle Batteries Using Machine Learning and Impedance Measurements . Electron . 2022 ; 11 ( 9 ). https://doi.org/10.3390/electronics11091414 Search in Google Scholar

Van Haeverbeke M, Stock M, De Baets B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access. 2022;10:51363–51379. https://doi.org/10.1109/ACCESS.2022.3174067 Van Haeverbeke M Stock M De Baets B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains . IEEE Access . 2022 ; 10 :51363 51379 . https://doi.org/10.1109/ACCESS.2022.3174067 Search in Google Scholar

Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Vol. 184, Electrochimica Acta. 2015;184:483–99. https://doi.org/10.1016/j.electacta.2015.09.097 Wan TH Saccoccio M Chen C Ciucci F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools . Vol. 184, Electrochimica Acta . 2015 ; 184 :483 99 . https://doi.org/10.1016/j.electacta.2015.09.097 Search in Google Scholar

Ramirez-Chavarria RG, Sanchez-Perez C, Romero-Ornelas L, Ramon-Gallegos E. Time-Constant-Domain Spectroscopy: An Impedance-Based Method for Sensing Biological Cells in Suspension. IEEE Sens J. 2021;21(1):185–92. https://doi.org/10.1109/JSEN.2020.3014569 Ramirez-Chavarria RG Sanchez-Perez C Romero-Ornelas L Ramon-Gallegos E. Time-Constant-Domain Spectroscopy: An Impedance-Based Method for Sensing Biological Cells in Suspension . IEEE Sens J . 2021 ; 21 ( 1 ): 185 92 . https://doi.org/10.1109/JSEN.2020.3014569 Search in Google Scholar

Ollmar S. Methods of information extraction from impedance spectra of biological tissue, in particular skin and oral mucosa-a critical review and suggestions for the future. Bioelectrochemistry Bioenerg. 1998;45(2):157–60. https://doi.org/10.1016/S0302-4598(98)00082-8 Ollmar S. Methods of information extraction from impedance spectra of biological tissue, in particular skin and oral mucosa-a critical review and suggestions for the future . Bioelectrochemistry Bioenerg . 1998 ; 45 ( 2 ): 157 60 . https://doi.org/10.1016/S0302-4598(98)00082-8 Search in Google Scholar

Oz A, Hershkovitz S, Belman N, Tal-Gutelmacher E, Tsur Y. Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance. Solid State Ionics. 2016;288:311–4. https://doi.org/10.1016/j.ssi.2015.11.008 Oz A Hershkovitz S Belman N Tal-Gutelmacher E Tsur Y. Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance . Solid State Ionics . 2016 ; 288 :311 4 . https://doi.org/10.1016/j.ssi.2015.11.008 Search in Google Scholar

Tuncer E, Macdonald JR. Comparison of methods for estimating continuous distributions of relaxation times. J Appl Phys. 2006;99(7):74106. https://doi.org/10.1063/1.2188053 Tuncer E Macdonald JR. Comparison of methods for estimating continuous distributions of relaxation times . J Appl Phys . 2006 ; 99 ( 7 ): 74106 . https://doi.org/10.1063/1.2188053 Search in Google Scholar

Schichlein H, Müller AC, Voigts M, Krügel A, Ivers-Tiffée E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem. 2002;32(8):875–82. https://doi.org/10.1023/A:1020599525160 Schichlein H Müller AC Voigts M Krügel A Ivers-Tiffée E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells . J Appl Electrochem . 2002 ; 32 ( 8 ): 875 82 . https://doi.org/10.1023/A:1020599525160 Search in Google Scholar

Sonn V, Leonide A, Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc. 2008;155(7):B675. https://doi.org/10.1149/1.2908860 Sonn V Leonide A Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/ 8YSZ cermet electrodes . J Electrochem Soc . 2008 ; 155 ( 7 ): B675 . https://doi.org/10.1149/1.2908860 Search in Google Scholar

Dierickx S, Weber A, Ivers-Tiffée E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells. Electrochim Acta. 2020;355:136764. https://doi.org/10.1016/j.electacta.2020.136764 Dierickx S Weber A Ivers-Tiffée E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells . Electrochim Acta . 2020 ; 355 :136764 . https://doi.org/10.1016/j.electacta.2020.136764 Search in Google Scholar

Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52(4):1023–40. https://doi.org/10.1137/0152060 Somersalo E Cheney M Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography . SIAM J Appl Math . 1992 ; 52 ( 4 ): 1023 40 . https://doi.org/10.1137/0152060 Search in Google Scholar

Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng. 1976;14(2):151–8. https://doi.org/10.1007/BF02478741 Yamamoto T Yamamoto Y. Electrical properties of the epidermal stratum corneum . Med Biol Eng . 1976 ; 14 ( 2 ): 151 8 . https://doi.org/10.1007/BF02478741 Search in Google Scholar

Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz. J Electr Bioimpedance. 2019;10(1):14–23. https://doi.org/10.2478/joeb-2019-0003 Tsai B Xue H Birgersson E Ollmar S Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz . J Electr Bioimpedance . 2019 ; 10 ( 1 ): 14 23 . https://doi.org/10.2478/joeb-2019-0003 Search in Google Scholar

Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy). IFAC-CNR; 1997. Andreuccetti D Fossi R Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz . IFAC-CNR, Florence (Italy) . IFAC-CNR ; 1997 . Search in Google Scholar

Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14–21. https://doi.org/10.1016/j.molimm.2014.10.023 Summerfield A Meurens F Ricklin ME. The immunology of the porcine skin and its value as a model for human skin . Mol Immunol . 2015 ; 66 ( 1 ): 14 21 . https://doi.org/10.1016/j.molimm.2014.10.023 Search in Google Scholar

Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig1. In: Skin-drug application and evaluation of environmental hazards. Karger Publishers; 1978. p. 39–52. https://doi.org/10.1159/000401274 Meyer W Schwarz R Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig1 . In: Skin-drug application and evaluation of environmental hazards . Karger Publishers ; 1978 . p. 39 52 . https://doi.org/10.1159/000401274 Search in Google Scholar

Debeer S, Le Luduec JB, Kaiserlian D, Laurent P, Nicolas JF, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatology. 2013;23(4):456–66. https://doi.org/10.1684/ejd.2013.2060 Debeer S Le Luduec JB Kaiserlian D Laurent P Nicolas JF Dubois B Comparative histology and immunohistochemistry of porcine versus human skin . Eur J Dermatology . 2013 ; 23 ( 4 ): 456 66 . https://doi.org/10.1684/ejd.2013.2060 Search in Google Scholar

Karacolak T, Cooper R, Unlu ES, Topsakal E. Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animals. IEEE Antennas Wirel Propag Lett. 2012;11:1686–9. https://doi.org/10.1109/LAWP.2013.2241722 Karacolak T Cooper R Unlu ES Topsakal E. Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animals . IEEE Antennas Wirel Propag Lett . 2012 ; 11 :1686 9 . https://doi.org/10.1109/LAWP.2013.2241722 Search in Google Scholar

Wake K, Sasaki K, Watanabe S. Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies. Phys Med Biol. 2016;61(12):4376–89. https://doi.org/10.1088/0031-9155/61/12/4376 Wake K Sasaki K Watanabe S. Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies . Phys Med Biol . 2016 ; 61 ( 12 ): 4376 89 . https://doi.org/10.1088/0031-9155/61/12/4376 Search in Google Scholar

Pessoa D, Rocha BM, Cheimariotis GA, Haris K, Strodthoff C, Kaimakamis E, et al. Classification of Electrical Impedance Tomography Data Using Machine Learning. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021. p. 349–53. https://doi.org/10.1109/EMBC46164.2021.9629961 Pessoa D Rocha BM Cheimariotis GA Haris K Strodthoff C Kaimakamis E Classification of Electrical Impedance Tomography Data Using Machine Learning . In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . 2021 . p. 349 53 . https://doi.org/10.1109/EMBC46164.2021.9629961 Search in Google Scholar

Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT). Biomed Phys Eng Express. 2023;9(4):45013. https://doi.org/10.1088/2057-1976/acd4c6 Rifai IN Baidillah MR Wicaksono R Akita S Takei M. Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT) . Biomed Phys Eng Express . 2023 ; 9 ( 4 ): 45013 . https://doi.org/10.1088/2057-1976/acd4c6 Search in Google Scholar

Kim MS, Cho Y, Seo ST, Son CS, Park HJ, Kim YN. A new method for non-invasive measurement of skin in the low frequency range. Healthc Inform Res. 2010;16(3):143–8. https://doi.org/10.4258/hir.2010.16.3.143 Kim MS Cho Y Seo ST Son CS Park HJ Kim YN. A new method for non-invasive measurement of skin in the low frequency range . Healthc Inform Res . 2010 ; 16 ( 3 ): 143 8 . https://doi.org/10.4258/hir.2010.16.3.143 Search in Google Scholar

Ramos A, Bertemes-Filho P. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe. Electromagn Biol Med. 2011;30(4):235–45. https://doi.org/10.3109/15368378.2011.589555 Ramos A Bertemes-Filho P. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe . Electromagn Biol Med . 2011 ; 30 ( 4 ): 235 45 . https://doi.org/10.3109/15368378.2011.589555 Search in Google Scholar

Ferreira DM, Silva CS, Souza MN. Electrical impedance model for evaluation of skin irritation in rabbits and humans. Ski Res Technol. 2007;13(3):259–67. https://doi.org/10.1111/j.1600-0846.2007.00217.x Ferreira DM Silva CS Souza MN. Electrical impedance model for evaluation of skin irritation in rabbits and humans . Ski Res Technol . 2007 ; 13 ( 3 ): 259 67 . https://doi.org/10.1111/j.1600-0846.2007.00217.x Search in Google Scholar

Luo X, Zhou Y, Smart T, Grossman D, Sanchez B. Electrical Characterization of Basal Cell Carcinoma Using a Handheld Electrical Impedance Dermography Device. JID Innov. 2022;2(1):100075. https://doi.org/10.1016/j.xjidi.2021.100075 Luo X Zhou Y Smart T Grossman D Sanchez B. Electrical Characterization of Basal Cell Carcinoma Using a Handheld Electrical Impedance Dermography Device . JID Innov . 2022 ; 2 ( 1 ): 100075 . https://doi.org/10.1016/j.xjidi.2021.100075 Search in Google Scholar

Sarac E, Meiwes A, Eigentler TK, Forchhammer S, Kofler L, Häfner HM, et al. Diagnostic accuracy of electrical impedance spectroscopy in non-melanoma skin cancer. Acta Derm Venereol. 2020;100(18):1–5. https://doi.org/10.2340/00015555-3689 Sarac E Meiwes A Eigentler TK Forchhammer S Kofler L Häfner HM Diagnostic accuracy of electrical impedance spectroscopy in non-melanoma skin cancer . Acta Derm Venereol . 2020 ; 100 ( 18 ): 1 5 . https://doi.org/10.2340/00015555-3689 Search in Google Scholar