Assessment of intestinal viability following acute intestinal ischemia is important. There is an associated high mortality rate (30 - 93 %) partly due to the difficulty in diagnosing and treating the disease before irreversible injury occurs [1, 2, 3]. Following intestinal ischemia, estimation of ischemia time and determination of resection region(s) play a decisive role. The main challenge in detecting intestinal ischemia is the diffuse symptoms. It is often hard to determine how long the intestine has been ischemic and if it is still viable or not. Visual inspection and palpation are still the standard clinical methods for evaluation of the intestinal viability. Estimation of color change, presence of visible peristalsis and bleeding from cut edges are often used to estimate the intestine condition [4, 5, 6, 7, 8]. Those methods are non-specific and often unreliable. Viable tissue might be removed, or more critically, irreversibly damaged tissue might be left in the patient. This may lead to a second surgery and slow down the patient recovery. Moreover, histological analysis has been used to assess intestinal viability [9] and a number of studies have been published. They report that the time before irreversible injury occurs varies between species, anatomical locations and between the ischemia models used [10, 11, 12]. There is no standard classification method for the histological assessment of intestinal ischemia injury [13]. Therefore, a non-invasive, easy to employ and reliable monitoring method of ischemic tissue injury is of great interest [14].
Electrical impedance spectroscopy (EIS) has been regarded as a promising method for early diagnosis and monitoring of tissue ischemia due to its non-invasive, non-destructive and easily applicable nature [14, 15].
Over the past decades, EIS has been utilized to investigate changes in electrical parameters during ischemia in various tissues [16, 17, 18, 19, 20]. The frequency dependent EIS measures how well materials impede electric current flow, when a voltage is being applied to the material under test. Biological materials contain cells with intra-and extra-cellular fluid. At low frequencies the current flow is mainly in the extracellular fluid, while with increasing frequency, the current passes through the cell membranes, resulting in different electrical properties [21]. The impedance response of biological tissue is strongly influenced by the cell composition [22]. During ischemia, physical changes in the tissue results in altered impedance values. As ischemia prolongs, there is a shift in the ratio between extracellular and intracellular water. The amount of extracellular water decreases, when the cells swell due to osmosis as the ionic pump function declines [21, 23]. Thereafter, a decrease of impedance is observed due to increased cell membrane permeability caused by reduced functionality [24]. As ischemia time prolongs, the
In this work, we investigated how electrical parameters of the human small intestine changed during ischemia and the data were fitted to a Cole model and analyzed. Using the Cole equation, the measured impedance data can both be visualized and analysed through the Cole parameters [25]. The
A total of 8 experiments were conducted on segments of resected human small intestine. The segments came from volunteer participants undergoing standard pancreaticoduodenectomy (Whipple procedure). The study involved no extra surgical procedures for the patients. The surgeon removed the head of the pancreas and a part of the small intestine. We received the intestine segments (length range 10 - 15 cm) immediately after the resection.
Impedance measurements were performed with a Solartron 1260 Impedance/gain-phase analyser (Solartron Analytical, UK) with a 1294A interface. A pair of Ag/AgCl electrocardiography disc electrodes with 9 mm in diameter (Quickels System AB, Sweden) was connected to the gain-phase analyzer. During the measurements, the data were logged by the ZPlot software (Scribner Associates, USA). The two-electrode set-up was chosen based on the previous study conducted on porcine small intestine by Strand-Amundsen et al. [27]. The reason for not choosing a tetrapolar set-up is that the set-up is more vulnerable to errors compared to bipolar set-ups [21]. Using a tetrapolar set-up on the surface of the small intestine, the current can easily shunt across the surface of the pick-up electrodes. This brings the potential of the pick-up electrodes to a level that is closer to that of the current-carrying electrodes. This leads to an overestimation of the transfer impedance and can lead to measuring a positive phase. A 50 mV signal was applied during all the measurements, while the resulting current was measured and calculated into impedance values. The frequency range used was from 100 Hz to 1 MHz, with 41 log-spaced frequency points. The resected intestinal samples were kept inside a container with a Ringer-solution with 4 % Albumin. The container was placed in a temperature controlled water bath at a constant temperature of 37 °C (normal bowel temperature) between the measurements in order to maintain a stable temperature and reduce loss of humidity.
Figure 1
Experiment set-up. Human intestine sample under measurement.

The research related to human use has been complied with all relevant national regulations, institutional policies and in accordance with the tenets of the Helsinki Declaration, and has been approved by the Norwegian regional ethical committee (2018/1630).
Electrical impedance is the ability of a material to oppose current flow. Complex electrical impedance (
The real part of the impedance is the in-phase resistance (
In 1940, Cole [28] introduced a mathematical model that can be used to fit the experimentally obtained electrical impedance data (Equation (3)). The model is based on four parameters
The Cole equation can be separated into its real (resistance (
where
Often, it is not necessary to use the entire frequency spectrum as there is a strong correlation between the impedance values at adjacent frequencies [21]. Therefore, to assess the viability of the small intestine tissue, the
The impedance of the small intestine was measured once an hour for a ten-hour period. The frequency dependent impedance showed different behavior for different degrees of ischemic injury. Figure 2 shows the mean measured impedance with 95 % confidence interval of eight samples (length range 10 - 15 cm) from eight different patients. The impedance values over the whole frequency range first decreased after one hour following resection, then increased for the two following hours, before decreasing again for the rest of the experiment. Comparing the mean impedance value from freshly resected samples with the mean impedance value after ten hours of ischemia, the decrease in impedance are 66.15 % (at the highest frequency) and 44.84 % (at the lowest frequency). Figure 3 shows the mean impedance values with 95 % confidence interval at selected frequencies. At all frequencies, the impedance value decreased after one hour. Then a plateau was observed at 3 hours before a continuous decrease until the end of the experiment. After 10 hours of ischemia, the impedance value all decreased towards 55 for all selected frequencies.
Figure 2
Plot of mean impedance values with 95 % confidence interval against frequency for 0 to 10 hours duration.

Figure 3
Plot of mean impedance values with 95 % confidence interval against time (0 to 10 hours) for selected frequencies.

The
Figure 4
Plot of calculated

The determination of the viability of ischemic intestine is still performed by manual observation of non-specific parameters like color, peristalsis and bleeding. We investigated how the
As figure 4 shows, the
Interestingly, for almost all samples, the
Another study published by Chen et al. [35] concluded that ileum segments can tolerate ischemia for less than 2 hours. Beltran et al. [36] reported that intestinal segments subjected to reperfusion after 2 hours of ischemia, did not fully recover after superior mesenteric artery occlusion in pig models. Regarding the ischemia tolerance time, based on the limited references, it appears that our
Our results show that the
To the best of our knowledge, this is the first study to investigate ischemic injury in human small intestine non-invasively using EIS and
Evaluation of changes in the passive electrical properties of human intestine during ischemia in eight intestinal segment is a limitation. A small dataset may not reveal the true variation in the group. We plan to increase the number of intestine samples in the future. As for the measurement techniques, placing the electrodes against the intestine wall results in variations of pressure which can potentially affect the measured impedance. Efforts were made to control this variation, but it still cannot be completely excluded. There are also some uncertainties regarding the reproducibility of the impedance data. The reported reproducibility of passive electrical behavior within the same tissue in the same animal model is not better than 90–95 % [29].
From our limited dataset, it is apparent that electrical properties can be used to assess the degree of ischemic injury on the human intestine. Our results suggest that there is a difference in the early changes during ischemia in measured impedance between pig intestine and human intestine. The time development of the
Figure 1

Figure 2

Figure 3

Figure 4
