Cite

Nyboer J. Electrical Impedance Plethysmography: The electrical resistive measure of the blood pulse volume, peripheral and central blood flow. Charles. C. Thomas; 1959. https://doi.org/10.1016/0002-8703(60)90473-7NyboerJElectrical Impedance Plethysmography: The electrical resistive measure of the blood pulse volume, peripheral and central blood flow. CharlesThomasC.1959https://doi.org/10.1016/0002-8703(60)90473-710.1016/0002-8703(60)90473-7Search in Google Scholar

Martinsen ØG, Grimnes S. The concept of transfer impedance in bioimpedance measurements. In 4th European Conference of the International Federation for Medical and Biological Engineering 2009 (pp. 1078-1079). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_257Martinsen ØGGrimnes SThe concept of transfer impedance in bioimpedance measurementsIn 4th European Conference of the International Federation for Medical and Biological Engineering200910781079SpringerBerlin, Heidelberghttps://doi.org/10.1007/978-3-540-89208-3_25710.1007/978-3-540-89208-3_257Search in Google Scholar

Lukaski HC, Johnson PE, Bolonchuk WW and Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985; 41(4):810-817. https://doi.org/10.1093/ajcn/41.4.810LukaskiHCJohnsonPEBolonchukWWLykkenGIAssessment of fat-free mass using bioelectrical impedance measurements of the human bodyAm J Clin Nutr1985414810817https://doi.org/10.1093/ajcn/41.4.81010.1093/ajcn/41.4.8103984933Search in Google Scholar

Kushner RF. Schoeller DA. 1986. Estimation of total body water by bioelectrical impedance analysis, The American Journal of Clinical Nutrition, 1986; 44(3):417–424. https://doi.org/10.1093/ajcn/44.3.417Kushner RFSchoeller DA1986Estimation of total body water by bioelectrical impedance analysisThe American Journal of Clinical Nutrition, 1986443417424https://doi.org/10.1093/ajcn/44.3.41710.1093/ajcn/44.3.4173529918Search in Google Scholar

Henderson RP, Webster JG. An impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng. 1978; 3:250-254. https://doi.org/10.1109/tbme.1978.326329HendersonRPWebsterJGAn impedance camera for spatially specific measurements of the thoraxIEEE Trans Biomed Eng19783250254https://doi.org/10.1109/tbme.1978.32632910.1109/TBME.1978.326329680754Search in Google Scholar

Barber DC, Brown BH, Freeston IL. Imaging spatial distributions of resistivity using applied potential tomography. Electron. Lett. 1983; 19(22):933–935. https://doi.org/10.1049/el:19830637BarberDCBrownBHFreestonIL Imaging spatial distributions of resistivity using applied potential tomographyElectron. Lett19831922933935https://doi.org/10.1049/el:1983063710.1007/978-94-009-6045-9_26Search in Google Scholar

Rabbani KS and Kabir H. Studies on the effect of the third dimension on a two dimensional Electrical Impedance Tomography system, Clin Phy & Physiol Meas. 1991; 12(4):393-402. https://doi.org/10.1088/0143-0815/12/4/009RabbaniKSKabirHStudies on the effect of the third dimension on a two dimensional Electrical Impedance Tomography systemClin Phy & Physiol Meas1991124393402https://doi.org/10.1088/0143-0815/12/4/00910.1088/0143-0815/12/4/0091778039Search in Google Scholar

González G, Huttunen JMJ, Kolehmainen V, Seppänen A and Vauhkonen, M. 2016. Experimental evaluation of 3D electrical impedance tomography with total variation prior. Inverse Problems in Science and Engineering. 2016; 24(8):1411-1431. https://doi.org/10.1080/17415977.2015.1113961GonzálezGHuttunenJMJKolehmainenVSeppänenAVauhkonenM.2016Experimental evaluation of 3D electrical impedance tomography with total variation priorInverse Problems in Science and Engineering. 201624814111431https://doi.org/10.1080/17415977.2015.111396110.1080/17415977.2015.1113961Search in Google Scholar

Rabbani KS, Sarker M, Akond MH, Akter T. Focused impedance measurement (FIM): a new technique with improved zone localization. Annals of the New York Academy of Sciences. 1999 Apr; 873(1):408-420. https://doi.org/10.1111/j.1749-6632.1999.tb09490.xRabbaniKSSarkerMAkondMHAkterTFocused impedance measurement (FIM): a new technique with improved zone localizationAnnals of the New York Academy of Sciences1999Apr;8731408420https://doi.org/10.1111/j.1749-6632.1999.tb09490.x10.1111/j.1749-6632.1999.tb09490.x10372184Search in Google Scholar

Rabbani KS, Karal MA. A new four-electrode Focused Impedance Measurement (FIM) system for physiological study. Annals of biomedical engineering. 2008; 36(6):1072-77. https://doi.org/10.1007/s10439-008-9470-7RabbaniKSKaralMAA new four-electrode Focused Impedance Measurement (FIM) system for physiological studyAnnals of biomedical engineering2008366107277https://doi.org/10.1007/s10439-008-9470-710.1007/s10439-008-9470-718347985Search in Google Scholar

Rabbani KS. Focused Impedance Method: Basics and Applications. In: Simini F., Bertemes-Filho P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham; 2018 pp. 137-185. https://doi.org/10.1007/978-3-319-74388-2_9RabbaniKSFocused Impedance Method: Basics and ApplicationsIn:Simini F.Bertemes-Filho P(eds)Bioimpedance in Biomedical Applications and ResearchSpringerCham2018137185https://doi.org/10.1007/978-3-319-74388-2_910.1007/978-3-319-74388-2_9Search in Google Scholar

Islam N, Rabbani KS, Wilson AJ. 2010. The sensitivity of focused electrical impedance measurements, Physiol. Meas. 2010; 31:S97–S109. https://doi.org/10.1088/0967-3334/31/8/s08IslamNRabbaniKSWilsonAJ.2010The sensitivity of focused electrical impedance measurementsPhysiol. Meas. 201031S97S109https://doi.org/10.1088/0967-3334/31/8/s0810.1088/0967-3334/31/8/S0820647612Search in Google Scholar

Kadir, MA, Baig, TN, Rabbani, KS. Focused impedance method to detect localized lung ventilation disorders in combination with conventional spirometry. Biomed. Eng.: Appl. Basis Commun. 2015; 27(03):1550029. https://doi.org/10.4015/s1016237215500295KadirMABaig TNRabbani KSFocused impedance method to detect localized lung ventilation disorders in combination with conventional spirometryBiomed. Eng.: Appl. Basis Commun201527031550029https://doi.org/10.4015/s101623721550029510.4015/S1016237215500295Search in Google Scholar

Rabbani KS. Simple electrode configurations for probing deep organs using Electrical Bio-Impedance techniques. Bangladesh Journal of Medical Physics. 2018; 11(1):1-15. https://doi.org/10.3329/bjmp.v11i1.44053RabbaniKSSimple electrode configurations for probing deep organs using Electrical Bio-Impedance techniquesBangladesh Journal of Medical Physics2018111115https://doi.org/10.3329/bjmp.v11i1.4405310.3329/bjmp.v11i1.44053Search in Google Scholar

Baker LE. Principles of the impedance technique. IEEE Engineering in Medicine and Biology Magazine. 1989; 8(1):11-15.BakerLEPrinciples of the impedance techniqueIEEE Engineering in Medicine and Biology Magazine198981111510.1109/51.3239818238298Search in Google Scholar

Grimnes S and Martinsen ØG. Bioelectricity and Biompedance Basics, p.188, Elsevier; 2015.GrimnesSMartinsenØGBioelectricity and Biompedance Basics188Elsevier201510.1016/B978-0-12-411470-8.00003-9Search in Google Scholar

Roy SK, Karal MA, Kadir MA, Rabbani KS. A new six-electrode electrical impedance technique for probing deep organs in the human body. Eur. Biophys. J. 2019; 48(8):711-719. https://doi.org/10.1007/s00249-019-01396-xRoySKKaralMAKadirMARabbaniKSA new six-electrode electrical impedance technique for probing deep organs in the human bodyEur. Biophys. J2019488711719https://doi.org/10.1007/s00249-019-01396-x10.1007/s00249-019-01396-x31529144Search in Google Scholar

Comsol Multiphysics, 2013. AC/DC Module user’s guide. Accessed: 6 December, 2019. https://www.comsol.com/acdc-moduleComsolMultiphysics2013AC/DC Module user’s guideAccessed: 6 December, 2019https://www.comsol.com/acdc-moduleSearch in Google Scholar

University of Texas Medical Branh information, Accessed: 6 December, 2019. http://ar.utmb.edu/webpath/radiol/radnorm/abct11.htmUniversity of Texas Medical Branh information, Accessed: 6 December2019http://ar.utmb.edu/webpath/radiol/radnorm/abct11.htmSearch in Google Scholar

Sauerheber R, Heinz B. Temperature effects on conductivity of seawater and physiologic saline, Mechanism and Significance. J. Chem. Sci. 2015; 6(4):1000109.SauerheberRHeinzBTemperature effects on conductivity of seawater and physiologic saline, Mechanism and SignificanceJ. Chem. Sci2015641000109Search in Google Scholar

Peyman A, Gabriel C, Grant EH. Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics. 2007; 28(4):264-274. https://doi.org/10.1002/bem.20271PeymanAGabrielCGrantEHComplex permittivity of sodium chloride solutions at microwave frequenciesBioelectromagnetics2007284264274https://doi.org/10.1002/bem.2027110.1002/bem.2027117203479Search in Google Scholar

Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 1971; 18:38–41. https://doi.org/10.1109/tbme.1971.4502787GeselowitzDBAn application of electrocardiographic lead theory to impedance plethysmographyIEEE Trans. Biomed. Eng1971183841https://doi.org/10.1109/tbme.1971.450278710.1109/TBME.1971.4502787Search in Google Scholar