Open Access

Enhancing sharp features by locally relaxing regularization for reconstructed images in electrical impedance tomography


Cite

Adler, A. and Guardo, R., 1996. Electrical impedance tomography: regularized imaging and contrast detection. IEEE Transactions on Medical Imaging, 15(2), pp.170-179.9. https://doi.org/10.1109/42.491418AdlerA.GuardoR.1996Electrical impedance tomography: regularized imaging and contrast detectionIEEE Transactions on Medical Imaging152170179https://doi.org/10.1109/42.49141810.1109/42.49141818215899Search in Google Scholar

Adler, A. and Lionheart, W.R., 2006. Uses and abuses of EIDORS: an extensible software base for EIT. Physiological Measurement, 27(5), pp.S25-42. https://doi.org/10.1088/0967-3334/27/5/s03AdlerA.LionheartW.R.2006Uses and abuses of EIDORS: an extensible software base for EITPhysiological Measurement275S2542https://doi.org/10.1088/0967-3334/27/5/s0310.1088/0967-3334/27/5/S0316636416Search in Google Scholar

Adler, A., Arnold, J.H., Bayford, R., Borsic, A., Brown, B., Dixon, P., Faes, T.J., Frerichs, I., Gagnon, H., Gärber, Y. and Grychtol, B., 2009. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement, 30(6), p.S35. https://doi.org/10.1088/0967-3334/30/6/s03AdlerA.ArnoldJ.H.BayfordR.BorsicA.BrownB.DixonP.FaesT.J.FrerichsI.GagnonH.GärberY.GrychtolB.2009GREIT: a unified approach to 2D linear EIT reconstruction of lung imagesPhysiological Measurement306S35https://doi.org/10.1088/0967-3334/30/6/s0310.1088/0967-3334/30/6/S0319491438Search in Google Scholar

Barber, D. C., and Brown, B. H., 1984. Applied potential tomography. Journal of Physics E: Scientific Instruments 17(9), p. 723BarberD. C.BrownB. H.1984Applied potential tomographyJournal of Physics E: Scientific Instruments17972310.1088/0022-3735/17/9/002Search in Google Scholar

Bera, T.K. and Nagaraju, J., 2011. Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement, 44(3), pp.518-526. https://doi.org/10.1016/j.measurement.2010.11.015BeraT.K.NagarajuJ.2011Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomographyMeasurement443518526https://doi.org/10.1016/j.measurement.2010.11.01510.1016/j.measurement.2010.11.015Search in Google Scholar

Bera, T.K., Biswas, S.K., Rajan, K. and Nagaraju, J., 2011. Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR) Technique in EIT&58; A Simulation Study. Journal of Electrical Bioimpedance, 2(1), pp.33-47. https://doi.org/10.5617/jeb.170BeraT.K.BiswasS.K.RajanK.NagarajuJ.2011Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR) Technique in EIT&58; A Simulation StudyJournal of Electrical Bioimpedance213347https://doi.org/10.5617/jeb.17010.5617/jeb.170Search in Google Scholar

Breckon, W.R., 1990. Image reconstruction in electrical impedance tomography (Doctoral dissertation, Oxford Polytechnic).BreckonW.R.1990Image reconstruction in electrical impedance tomography (Doctoral dissertationOxford PolytechnicSearch in Google Scholar

Cheney, M., Isaacson, D., Newell, J.C., Simske, S. and Goble, J., 1990. NOSER: An algorithm for solving the inverse conductivity problem. International Journal of Imaging Systems and Technology, 2(2), pp.66-75. https://doi.org/10.1002/ima.1850020203CheneyM.IsaacsonD.NewellJ.C.SimskeS.GobleJ.1990NOSER: An algorithm for solving the inverse conductivity problemInternational Journal of Imaging Systems and Technology226675https://doi.org/10.1002/ima.185002020310.1002/ima.1850020203Search in Google Scholar

Cui, M., Wonka, P., Razdan, A. and Hu, J., 2007. A new image registration scheme based on curvature scale space curve matching. The Visual Computer, 23(8), pp.607-618. https://doi.org/10.1007/s00371-007-0164-1CuiM.WonkaP.RazdanA.HuJ.2007A new image registration scheme based on curvature scale space curve matchingThe Visual Computer238607618https://doi.org/10.1007/s00371-007-0164-110.1007/s00371-007-0164-1Search in Google Scholar

González, G., Kolehmainen, V. and Seppänen, A., 2017. Isotropic and anisotropic total variation regularization in electrical impedance tomography. Computers & Mathematics with Applications, 74(3), pp.564-576. https://doi.org/10.1016/j.camwa.2017.05.004GonzálezG.KolehmainenV.SeppänenA.2017Isotropic and anisotropic total variation regularization in electrical impedance tomographyComputers & Mathematics with Applications743564576https://doi.org/10.1016/j.camwa.2017.05.00410.1016/j.camwa.2017.05.004Search in Google Scholar

Gonzalez, R.S. and Wintz, P., 1977. Digital image processing. Addison Wesley.GonzalezR.S.WintzP.1977Digital image processingAddison WesleySearch in Google Scholar

Graham, B.M., 2007. Enhancements in Electrical Impedance Tomography (EIT) image reconstruction for three-dimensional lung imaging (Doctoral dissertation, University of Ottawa, Canada).GrahamB.M.2007Enhancements in Electrical Impedance Tomography (EIT) image reconstruction for three-dimensional lung imagingDoctoral dissertationUniversity of OttawaCanadaSearch in Google Scholar

Hauptmann, A., Kolehmainen, V., Mach, N.M., Savolainen, T., Seppänen, A. and Siltanen, S., 2017. Open 2D electrical impedance tomography data archive. arXiv preprint arXiv:1704.01178.HauptmannA.KolehmainenV.MachN.M.SavolainenT.SeppänenA.SiltanenS.2017Open 2D electrical impedance tomography data archivearXiv preprint arXiv:1704.01178Search in Google Scholar

Holder, D.S. ed., 2004. Electrical impedance tomography: methods, history and applications. CRC Press.HolderD.S. ed.2004Electrical impedance tomography: methods, history and applicationsCRC Press10.1201/9781420034462.ch4Search in Google Scholar

Javaherian, A., Movafeghi, A. and Faghihi, R., 2013. Reducing negative effects of quadratic norm regularization on image reconstruction in electrical impedance tomography. Applied Mathematical Modelling, 37(8), pp.5637-5652. https://doi.org/10.1016/j.apm.2012.11.022JavaherianA.MovafeghiA.FaghihiR.2013Reducing negative effects of quadratic norm regularization on image reconstruction in electrical impedance tomographyApplied Mathematical Modelling37856375652https://doi.org/10.1016/j.apm.2012.11.02210.1016/j.apm.2012.11.022Search in Google Scholar

Kang, S.I., Khambampati, A.K., Kim, B.S. and Kim, K.Y., 2017. EIT image reconstruction for two-phase flow monitoring using a subdomain based regularization method. Flow Measurement and Instrumentation, 53, pp.28-38. https://doi.org/10.1016/j.flowmeasinst.2016.06.002KangS.I.KhambampatiA.K.KimB.S.KimK.Y.2017EIT image reconstruction for two-phase flow monitoring using a subdomain based regularization methodFlow Measurement and Instrumentation532838https://doi.org/10.1016/j.flowmeasinst.2016.06.00210.1016/j.flowmeasinst.2016.06.002Search in Google Scholar

Polydorides, N. and Lionheart, W.R., 2002. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Measurement Science and Technology, 13(12), p.1871. https://doi.org/10.1088/0957-0233/13/12/310PolydoridesN.LionheartW.R.2002A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software projectMeasurement Science and Technology13121871https://doi.org/10.1088/0957-0233/13/12/31010.1088/0957-0233/13/12/310Search in Google Scholar

Polydorides, N., 2002. Image reconstruction algorithms for soft field tomography (Doctoral dissertation, University of Manchester).PolydoridesN.2002Image reconstruction algorithms for soft field tomographyDoctoral dissertationUniversity of ManchesterSearch in Google Scholar

Ranade, N.V. and Gharpure, D.C., 2015, March. Design and development of instrumentation for acquiring electrical impedance tomography data. In Physics and Technology of Sensors (ISPTS), 2015 2nd IEEE International Symposium on (pp. 97-101). https://doi.org/10.1109/ispts.2015.7220091RanadeN.V.GharpureD.C.2015March. Design and development of instrumentation for acquiring electrical impedance tomography dataIn Physics and Technology of Sensors (ISPTS), 2015 2nd IEEE International Symposium on97101https://doi.org/10.1109/ispts.2015.722009110.1109/ISPTS.2015.7220091Search in Google Scholar

Seagar, A.D., Barber, D.C. and Brown, B.H., 1987. Theoretical limits to sensitivity and resolution in impedance imaging. Clinical Physics and Physiological Measurement, 8(4A), p.13. https://doi.org/10.1088/0143-0815/8/4a/003SeagarA.D.BarberD.C.BrownB.H.1987Theoretical limits to sensitivity and resolution in impedance imagingClinical Physics and Physiological Measurement84A13https://doi.org/10.1088/0143-0815/8/4a/00310.1088/0143-0815/8/4A/0033568561Search in Google Scholar

Subburaj, K., Ravi, B. and Agarwal, M., 2009. Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Computerized Medical Imaging and Graphics, 33(5), pp.359-368. https://doi.org/10.1016/j.compmedimag.2009.03.001SubburajK.RaviB.AgarwalM.2009Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan imagesComputerized Medical Imaging and Graphics335359368https://doi.org/10.1016/j.compmedimag.2009.03.00110.1016/j.compmedimag.2009.03.00119345065Search in Google Scholar

Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P., 1998. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Transactions on Medical Imaging, 17(2), pp.285-293. https://doi.org/10.1109/42.700740VauhkonenM.VadaszD.KarjalainenP.A.SomersaloE.KaipioJ.P.1998Tikhonov regularization and prior information in electrical impedance tomographyIEEE Transactions on Medical Imaging172285293https://doi.org/10.1109/42.70074010.1109/42.7007409688160Search in Google Scholar

Vergara, S., Sbarbaro, D. and Johansen, T.A., 2017. Accurate position estimation methods based on electrical impedance tomography measurements. Measurement Science and Technology, 28(8), p.084003. https://doi.org/10.1088/1361-6501/aa743fVergaraS.SbarbaroD.JohansenT.A.2017Accurate position estimation methods based on electrical impedance tomography measurementsMeasurement Science and Technology288084003https://doi.org/10.1088/1361-6501/aa743f10.1088/1361-6501/aa743fSearch in Google Scholar

Yang, Chuan Li., 2014. Electrical impedance tomography: algorithms and applications (Doctoral Dissertation, University of Bath, UK).YangChuan Li.2014Electrical impedance tomography: algorithms and applicationsDoctoral DissertationUniversity of BathUKSearch in Google Scholar