Open Access

Rectifying memristor bridge circuit realized with human skin

   | Dec 31, 2018

Cite

Chua LO. Memristor-the missing circuit element. IEEE Transactions on circuit theory. 1971;18(5):507-19. https://doi.org/10.1109/TCT.1971.1083337ChuaLOMemristor-the missing circuit elementIEEE Transactions on circuit theory197118550719https://doi.org/10.1109/TCT.1971.108333710.1109/TCT.1971.1083337Search in Google Scholar

Chua LO. Everything you wish to know about memristors but are afraid to ask. Radioengineering. 2015;24(2):319. https://doi.org/10.13164/re.2015.0319ChuaLOEverything you wish to know about memristors but are afraid to askRadioengineering2015242319https://doi.org/10.13164/re.2015.031910.13164/re.2015.0319Search in Google Scholar

Chua LO. If it's pinched it's a memristor. Semiconductor Science and Technology. 2014;29(10):104001. https://doi.org/10.1088/0268-1242/29/10/104001ChuaLOIf it's pinched it's a memristor. Semiconductor Science and Technology20142910104001https://doi.org/10.1088/0268-1242/29/10/10400110.1088/0268-1242/29/10/104001Search in Google Scholar

Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. nature. 2008;453(7191):80. https://doi.org/10.1038/nature06932StrukovDBSniderGSStewartDRWilliamsRSThe missing memristor foundnature2008453719180https://doi.org/10.1038/nature0693210.1038/nature06932Search in Google Scholar

Torrezan AC, Strachan JP, Medeiros-Ribeiro G, Williams RS. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology. 2011;22(48):485203. https://doi.org/10.1088/0957-4484/22/48/485203TorrezanACStrachanJPMedeiros-RibeiroGWilliamsRSSub-nanosecond switching of a tantalum oxide memristorNanotechnology20112248485203https://doi.org/10.1088/0957-4484/22/48/48520310.1088/0957-4484/22/48/485203Search in Google Scholar

Yang JJ, Zhang M-X, Strachan JP, Miao F, Pickett MD, Kelley RD, et al. High switching endurance in TaO x memristive devices. Applied Physics Letters. 2010;97(23):232102. https://doi.org/10.1063/1.3524521YangJJZhangM-XStrachanJPMiaoFPickettMDKelleyRDet alHigh switching endurance in TaO x memristive devicesApplied Physics Letters20109723232102https://doi.org/10.1063/1.352452110.1063/1.3524521Search in Google Scholar

Zhu X, Su W, Liu Y, Hu B, Pan L, Lu W, et al. Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory. Advanced Materials. 2012;24(29):3941-6. https://doi.org/10.1002/adma.201201506ZhuXSuWLiuYHuBPanLLuWet alObservation of Conductance Quantization in Oxide-Based Resistive Switching MemoryAdvanced Materials2012242939416https://doi.org/10.1002/adma.20120150610.1002/adma.201201506Search in Google Scholar

Volkov AG, Tucket C, Reedus J, Volkova MI, Markin VS, Chua LO. Memristors in plants. Plant signaling & behavior. 2014;9(3):e28152. https://doi.org/10.4161/psb.28152VolkovAGTucketCReedusJVolkovaMIMarkinVSChuaLOMemristors in plantsPlant signaling & behavior201493e28152https://doi.org/10.4161/psb.2815210.4161/psb.28152Search in Google Scholar

Gale E, Adamatzky A, de Lacy Costello B. Slime mould memristors. BioNanoScience. 2015;5(1):1-8. https://doi.org/10.1007/s12668-014-0156-3GaleEAdamatzkyAde LacyCostello BSlime mould memristorsBioNanoScience20155118https://doi.org/10.1007/s12668-014-0156-310.1007/s12668-014-0156-3Search in Google Scholar

Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W. Nanoscale memristor device as synapse in neuromorphic systems. Nano letters. 2010;10(4):1297-301. https://doi.org/10.1021/nl904092hJoSHChangTEbongIBhadviyaBBMazumderPLuWNanoscale memristor device as synapse in neuromorphic systemsNano letters20101041297301https://doi.org/10.1021/nl904092h10.1021/nl904092hSearch in Google Scholar

Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis T. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology. 2013;24(38):384010. https://doi.org/10.1088/0957-4484/24/38/384010IndiveriGLinares-BarrancoBLegensteinRDeligeorgisGProdromakisTIntegration of nanoscale memristor synapses in neuromorphic computing architecturesNanotechnology20132438384010https://doi.org/10.1088/0957-4484/24/38/38401010.1088/0957-4484/24/38/384010Search in Google Scholar

Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015;521(7550):61-4. https://doi.org/10.1038/nature14441PreziosoMMerrikh-BayatFHoskinsBDAdamGCLikharevKKStrukovDBTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature20155217550614https://doi.org/10.1038/nature1444110.1038/nature14441Search in Google Scholar

Merrikh-Bayat F, Shouraki SB. Memristor-based circuits for performing basic arithmetic operations. Procedia Computer Science. 2011;3:128-32. https://doi.org/10.1016/j.procs.2010.12.022Merrikh-BayatFShourakiSBMemristor-based circuits for performing basic arithmetic operationsProcedia Computer Science2011312832https://doi.org/10.1016/j.procs.2010.12.02210.1016/j.procs.2010.12.022Search in Google Scholar

Bickerstaff KA, Swartzlander EE. Memristor-based arithmetic. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR); 2010: IEEE. https://doi.org/10.1109/ACSSC.2010.5757715BickerstaffKASwartzlanderEEMemristor-based arithmetic. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)2010https://doi.org/10.1109/ACSSC.2010.575771510.1109/ACSSC.2010.5757715Search in Google Scholar

Kim H, Sah MP, Yang C, Roska T, Chua LO. Memristor bridge synapses. Proceedings of the IEEE. 2012;100(6):2061-70. https://doi.org/10.1109/JPROC.2011.2166749KimHSahMPYangCRoskaTChuaLOMemristor bridge synapsesProceedings of the IEEE20121006206170https://doi.org/10.1109/JPROC.2011.216674910.1109/JPROC.2011.2166749Search in Google Scholar

Cohen GZ, Pershin YV, Di Ventra M. Second and higher harmonics generation with memristive systems. Applied Physics Letters. 2012;100(13):133109. https://doi.org/10.1063/1.3698153CohenGZPershinYVDi VentraMSecond and higher harmonics generation with memristive systemsApplied Physics Letters201210013133109https://doi.org/10.1063/1.369815310.1063/1.3698153Search in Google Scholar

Pabst O, Schmidt T. Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator. Journal of Electrical Bioimpedance. 2013;4(1):23-32. https://doi.org/10.5617/jeb.539PabstOSchmidtTFrequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generatorJournal of Electrical Bioimpedance2013412332https://doi.org/10.5617/jeb.53910.5617/jeb.539Search in Google Scholar

Grimnes S. Skin impedance and electro-osmosis in the human epidermis. Med Biol Eng Comput. 1983;21(6):739-49. https://doi.org/10.1007/BF02464037GrimnesSSkin impedance and electro-osmosis in the human epidermisMed Biol Eng Comput198321673949https://doi.org/10.1007/BF0246403710.1007/BF02464037Search in Google Scholar

Yamamoto T, Yamamoto Y. Non-linear electrical properties of skin in the low frequency range. Medical and Biological Engineering and Computing. 1981;19(3):302. https://doi.org/10.1007/BF02442549YamamotoTYamamotoYNon-linear electrical properties of skin in the low frequency rangeMedical and Biological Engineering and Computing1981193302https://doi.org/10.1007/BF0244254910.1007/BF02442549Search in Google Scholar

Panescu D, Webster JG, Stratbucker RA. A nonlinear electrical-thermal model of the skin. IEEE Transactions on Biomedical Engineering. 1994;41(7):672-80. https://doi.org/10.1109/10.301734PanescuDWebsterJGStratbuckerRAA nonlinear electrical-thermal model of the skinIEEE Transactions on Biomedical Engineering199441767280https://doi.org/10.1109/10.30173410.1109/10.301734Search in Google Scholar

Johnsen GK, Lutken CA, Martinsen OG, Grimnes S. Memristive model of electro-osmosis in skin. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(3 Pt 1):031916. https://doi.org/10.1103/PhysRevE.83.031916JohnsenGKLutkenCAMartinsenOGGrimnesSMemristive model of electro-osmosis in skinPhys Rev E Stat Nonlin Soft Matter Phys2011833 Pt 1031916https://doi.org/10.1103/PhysRevE.83.03191610.1103/PhysRevE.83.031916Search in Google Scholar

Pabst O, Martinsen ØG, Chua LO. The non-linear electrical properties of human skin make it a generic memristor. Scientific reports. 2018;8(1):15806. https://doi.org/10.1038/s41598-018-34059-6PabstOMartinsenØGChuaLOThe non-linear electrical properties of human skin make it a generic memristorScientific reports20188115806https://doi.org/10.1038/s41598-018-34059-610.1038/s41598-018-34059-6Search in Google Scholar

Martinsen ØG, Grimnes S. Bioimpedance and bioelectricity basics: Academic press; 2015.MartinsenØGGrimnesSBioimpedance and bioelectricity basicsAcademic press201510.1016/B978-0-12-411470-8.00011-8Search in Google Scholar

Pabst O, Tronstad C, Martinsen ØG, editors. Instrumentation, electrode choice and challenges in human skin memristor measurement. Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE; 2017: IEEE. https://doi.org/10.1109/EMBC.2017.8037205PabstOTronstadCMartinsenØGInstrumentation, electrode choice and challenges in human skin memristor measurement. Engineering in Medicine and Biology Society (EMBC)201739th Annual International Conference of the IEEE; 2017: IEEEhttps://doi.org/10.1109/EMBC.2017.803720510.1109/EMBC.2017.8037205Search in Google Scholar