1. bookVolume 16 (2023): Issue 2 (September 2023)
Journal Details
First Published
20 Jun 2008
Publication timeframe
3 times per year
Open Access

Zonal Concept: Landscape Level Parameters and Application

Published Online: 06 Oct 2023
Volume & Issue: Volume 16 (2023) - Issue 2 (September 2023)
Page range: 24 - 49
Received: 21 May 2023
Accepted: 25 Jul 2023
Journal Details
First Published
20 Jun 2008
Publication timeframe
3 times per year

Anon, (2020). ZABAGED® - Výškopis - DMR 4G. Digitální model reliéfu České republiky 4.generace. Retrieved July 23, 2023, from: http://data.europa.eu/88u/dataset/cz-cuzk-dmr4g-v. (In Czech). Search in Google Scholar

Austin, M. P., (2013). Vegetation and Environment: Discontinuities and Continuities. In E. van der Maarel and J. Franklin (Eds.), Vegetation Ecology: Second Edition, (pp. 71–106). John Wiley. Search in Google Scholar

Bailey R. G., (2002). Ecoregion-based Design for Sustainability. Springer-Verlag, New York, USA. 232 p. Search in Google Scholar

Barbosa, W. R., Romero, R. E., de Souza Junior, V. S., Cooper, M., Sartor, L. R., de Moya Partiti, C. S., de Oliviera Jorge, F., Cohen, R., de Jesus, S. L., and Ferreira, T. O. (2015). Effects of slope orientation on pedogenesis of altimontane soils from the Brazilian semi-arid region (Baturite massif, Ceara·). Environ Earth Sci, 73, 3731–3743. https://doi.org/10.1007/s12665-014-3660-4. Search in Google Scholar

Bína, J., Demek, J., (2012). Z nížin do hor: geomorfologické jednotky České republiky. Academia. Praha. 334 p. (In Czech). Search in Google Scholar

Böhner, J., Antonić, O., (2009). Land-Surface Parameters Specific to Topo-Climatology. Developments in Soil Science, 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1 Search in Google Scholar

Böhner, J., Selige, T., (2006). Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In K. R. McCloy and J. Strobl: SAGA – Analysis and Modelling Applications (Vol. 115, pp. 13-27). Göttinger Geographische Abhandlungen. Search in Google Scholar

Böhner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., Selige, T., (2001). Soil regionalisation by means of terrain analysis and process parameterisation. Soil Classification, 7, 213–222. Search in Google Scholar

Box, G. E. P., Cox, D. R., (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–252. http://www.jstor.org/stable/2984418. Search in Google Scholar

Braun-Blanquet, J. (1928). Pflanzensoziologie: Grundzüge der Vegetationskunde: Biologische Studienbücher 7. Julius Springer. Berlin, Germany. 330 p. Search in Google Scholar

Breiman, L., (2001). Random Forest. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324. Search in Google Scholar

Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., (1984). Classification and Regression Trees. Chapman and Hall. London, UK. 368 p. https://doi.org/10.1201/9781315139470. Search in Google Scholar

Çellek, S., (2020). Effect of the Slope Angle and Its Classification on Landslide. Natural Hazards and Earth System Sciences, 1–23. https://doi.org/10.5194/nhess-2020-87. Search in Google Scholar

Chlupáč, I., (2011). Geologická minulost České republiky (Second Edition). Academia. Praha. 436 p. (In Czech). Search in Google Scholar

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015. Search in Google Scholar

CHI, (2022). Czech Hydrometeorological Institute. Climate data of the Czech Republic (1990–2014). https://www.chmi.cz/historicka-data/pocasi/zakladni-informace?l=en. Search in Google Scholar

de Oliviera Junior, J. C., Mucha, N. M., Rodrigues, N. F., Pellegrini, A., and de Paula Souza, L. C., (2022). Topographic attributes to map land use capability of soils derived from basalt. Environmental Earth Sciences, 81(19). https://doi.org/10.21203/rs.3.rs-1551316/v1. Search in Google Scholar

Deng, Y., Wilson, J.P., Bauer, B.O., (2007). DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21(2), 187-213. https://doi.org/10.1080/13658810600894364. Search in Google Scholar

Demek, J., (1987). Obecná geomorfologie. Academia.476 p. (In Czech). Search in Google Scholar

Dokuchaev, V.V., (1883). Russian Chernozem (Russkii Chernozem). Translated from Russian by N. Kaner. Jerusalem: Israel Program for Scientific Translations (1967). Jerusalem, Israel (419 p.). Available from US Department of Commerce, Washington, DC. 419 p. Search in Google Scholar

Doneus, M., (2013). Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sensing, 5, 6427–6442. https://doi.org/10.3390/rs5126427. Search in Google Scholar

Dujka, P., Kusbach, A., (2022). Zonal concept in vegetation classification: review. Zprávy lesnického výzkumu, 67(4), 236–245. https://www.vulhm.cz/zlv_online_detail/zonalni-koncept-v-lesnicke-typologii-review/. Search in Google Scholar

Ďuračiová, R., Pružinec, F., (2022). Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains. International Journal of Geo-Information, 11(7), 389. https://doi.org/10.3390/ijgi11070389. Search in Google Scholar

Fazlollahi Mohammadi, M., Jalali, S. G. H., Kooch, Y., Said-Pullicino, D., (2016). Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran. Eurasian Soil Science, 49(12), 1366–1374. https://doi.org/10.1134/S1064229316120061. Search in Google Scholar

Fick, S.E., Hijmans, R.J., (2017). WordClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. https://worldclim.org/data/index.html#. Search in Google Scholar

Forest Managament Institute (FMI), (2023). Přehled lesních typů a souborů lesních typů v ČR. Ústav pro hospodářskou úpravu lesů Brandýs nad Labem. https://www.uhul.cz/wp-content/uploads/tabulka-LT_2023_web_FIN.pdf. Search in Google Scholar

Freeman, T. G., (1991). Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17(3), 413-422. https://doi.org/10.1016/0098-3004(91)90048-I. Search in Google Scholar

Gallant, J. C., Dowling, T. I., (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12), 1–13. https://doi.org/10.1029/2002WR001426. Search in Google Scholar

Gömöry, D., Krajmerová, D., Hrivnák, M., Longauer, R., (2020). Assisted migration vs. close-to-nature forestry: what are the prospects for tree populations under climate change? Central European Forestry Journal, 66, 63–70. https://doi.org/10.2478/forj-2020-0008. Search in Google Scholar

Grimm, N. B., Stuart Chaplin III, F., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P. A., Schimel, J., Williamson, C. E., (2013). The impacts of climate change on ecosystem structure and function. Front Ecol Environ, 11(9), 474–482. https://doi.org/10.1890/120282. Search in Google Scholar

Guisan, A., Weiss, S. B., Weiss, A. D., (1999). GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107–122. https://doi.org/10.1023/A:1009841519580. Search in Google Scholar

Heidrich, J., (2018). Porovnání vybraných edafických kategorií na základě půdních rozborů. In Hrubá, V., Friedl, M. (Eds.), Geobiocenologie a lesnická typologie a jejich aplikace v lesnictví a krajinářství (pp. 43-46). Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně, Brno. (In Czech). Search in Google Scholar

Heinrich, R., Conrad, O., (2008). Diffusion, Flow and Concentration Gradient Simulation with SAGA GIS using Cellular Automata Methods. In J. Böhner, T. Blaschke, and L. Montanarella (Eds.), SAGA – Seconds Out. Hamburger Beiträge zur Physischen Geographie und Landschaftsoekologie (pp.29 – 70), 19. Search in Google Scholar

Hills, G. A., (1952). The classification and evaluation of site for forestry. Ontario Department of Lands and Forests, 24, 41 p. Search in Google Scholar

Howitt, D., Cramer, D., (2014). Introduction to Research Methods in Psychology (Fourth Edition). Trans-Atlantic Publications. Philadelphia. 449 p. Search in Google Scholar

Hu, A., Duan, Y., Xu, L., Chang, S., Chen, X., and Hou, F., (2021). Litter decomposes slowly on shaded steep slope and sunny gentle slope in a typical steppe ecoregion. Ecology and Evolution, 11(6), 2461–2470. https://doi.org/10.1002/ece3.6933. Search in Google Scholar

Iwahashi, J., Pike, R. J., (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3-4), 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012. Search in Google Scholar

Iwahashi, J., Watanabe, S., Furuya, T., (2001). Landform analysis of slope movements using DEM in Higashikubiki area, Japan. Computers and Geosciences, 27(7), 851–865. https://doi.org/10.1016/S0098-3004(00)00144-8. Search in Google Scholar

Jahn, R., Blume, H. P., Asio, V. B., Schad, O., Langohr, P., Brinkman, R., Nachtergaele, F. O., and Pavel Krasilnikov, R., (2006). Guidelines for soil description (Fourth Edition). Food and Agriculture Organization of the United Nations. Rome. 109 p. Search in Google Scholar

Kaiser, H. F., (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1), 141–151. https://doi.org/10.1177/0013164460020001. Search in Google Scholar

Karaman, K., (2019). A Comparative Analysis of Slope Height Using Simple Methods. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 600–609. https://doi.org/10.17714/gumusfenbil.541387. Search in Google Scholar

Kassambara, A., Mundt, F., (2020). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra. Search in Google Scholar

Katz, B. M., McSweeney, M., (1980). A multivariate Kruskal-Wallis test with post hoc procedures. Multivariate Behavioral Research, 15(3), 281–297. https://doi.org/10.1207/s15327906mbr1503_4. Search in Google Scholar

Klaschka, J., Kotrč, E., (2004). Klasifikační a regresní lesy. In Antoch, J., Dohnal, G. (Eds.), ROBUST 2004: Sborník prací 13. letní školy JČMF ROBUST 2004 (pp. 177–184). Uspořádané Jednotou českých matematiků a fyziků za podpory KPMS MFF UK a České statistické společnosti ve dnech 7. – 11. června 2004 v Třešti. (In Czech). Search in Google Scholar

Koethe, R., Lehmeier, F., (1996). SARA – System zur Automatischen Relief-Analyse (Second Edition). Dept. of Geography, University of Goettingen, unpublished. Search in Google Scholar

Komprdová, K., (2012). Rozhodovací stromy a lesy. Akademické nakladatelství CERM. Brno. 98 p.(In Czech). Search in Google Scholar

Krajina, V. J., (1965). Biogeoclimatic Zones and Classification of British Columbia. Dept. of Botany, University of British Columbia. Vancouver, Ecology of Western North America 1, 1–17. Search in Google Scholar

Kučera, M., Adolt, R. (Eds.), (2019). Národní inventarizace lesů v České republice – výsledky druhého cyklu 2011–2015. Ústav pro hospodářskou úpravu lesů Brandýs nad Labem. https://nil.uhul.cz/downloads/2019_kniha_nil2_web.pdf. Search in Google Scholar

Kusbach, A., Friedl, M., Zouhar, V., Mikita, T., Šebesta, J., (2017). Assessing Forest Classification in a Landscape-Level Framework: Am Example form Central European Forests. Forests, 8(461), 1–20. https://doi.org/10.3390/f8120461. Search in Google Scholar

Kusbach, A., Šebesta, J., Friedl, M., Zouhar, V., Mikita, T., (2018). 60 let konceptu lesní vegetační stupňovitosti v Českých zemích. In Hrubá, V., Friedl, M. (Eds.), Geobiocenologie a lesnická typologie a jejich aplikace v lesnictví a krajinářství (pp. 81-96). Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně, Brno. (In Czech). Search in Google Scholar

Kusbach, A., Štěrba, T., Šebesta, J., Mikita, T., Bazarradnaa, E., Dambadarjaa, S., Smola, M., (2019). Ecological Zonation As A Tool For Restoration Of Degraded Forests In Northern Mongolia. Geography, Environment, Sustainability, 12(3), 98–116. https://doi.org/10.24057/2071-9388-2019-31. Search in Google Scholar

Lal, R., (1988). Effects of slope length, slope gradient, tillage methods and cropping systems on runoff and soil erosion on a tropical Alfisol: preliminary results: Proceedings of the Porto Alegre Symposium. Sediment Budget, 174, 79–88. Search in Google Scholar

Landis, J. R., Koch, G. G., (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. https://doi.org/10.2307/2529310. Search in Google Scholar

Liaw A, Wiener M., (2002). Classification and Regression by randomForest.” R News, 2(3), 18-22. https://CRAN.R-project.org/doc/Rnews/. Search in Google Scholar

Lundbäck, M., Persson, H., Häggström, C., Nordfjell, T., (2021). Global analysis of the slope of forest land. Forestry: An International Journal of Forest Research, 94(1), 54–69. https://doi.org/10.1093/forestry/cpaa021. Search in Google Scholar

Major, J., (1951). A Funcional, Factorial Approach to Plant Ecology. Ecology, 32(3), 392–412. Search in Google Scholar

Meidinger, D., Pojar, J. (Eds.), (1991). Ecosystems of British Columbia (Sixth Edition). Ministry of Forests. Special Report Series, Victoria, BC. 342 p. Search in Google Scholar

Meloun, M., Militký, J., (2012). Statistická analýza vícerozměrných dat v příkladech (Second Edition). Academia. Praha. 736 p. (In Czech). Search in Google Scholar

Mercier, D. (Ed.), (2021). Spatial Impacts of Climate Change. ISTE-Wiley, London. 332 p. Search in Google Scholar

Moores, E. M., Fairbridge, R. W. (Eds.), (1997). Encyclopedia of European and Asian regional geology. Chapman and Hall. London, UK. 804 p. Search in Google Scholar

Mucina, L., (2019). Biome: evolution of a crucial ecological and biogeographical concept. New Phytologist, 222, 97–114. https://doi.org/10.1111/nph.15609. Search in Google Scholar

Němeček, J., Mühlhanselová, M., Macků, J., Vokoun, J., Vavříček, D., Novák, P., (2011). Taxonomický klasifikační systém půd České republiky (Second Edition). Česká zemědělská univerzita. Praha. 94 p. (In Czech). Search in Google Scholar

Novotný, I., Vopravil, J., Kohoutová, L., Poruba, M., Papaj, V., Khel, T., Žigmund, I., Vašků, Z., Novák, P., Tomiška, Z., Koutná, R., Pacola, M., Novotný, J., Pírková, I., Havelková, L., Brouček, J., and Žížala, D., (2013). Metodika mapování a aktualizace bonitovaných půdně ekologických jednotek: bonitace zemědělského půdního fondu (Fourth Edition). Výzkumný ústav meliorací a ochrany půdy. Praha. 172 p. (In Czech). Search in Google Scholar

Oksanen, F.J., et al., (2022). Vegan: Community Ecology Package. R package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Search in Google Scholar

Panagos, P., Borrelli, P., Meusburger, K., (2015). A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences, 5, 117–126. https://doi.org/10.3390/geosciences5020117. Search in Google Scholar

Pánek, T., Kapustová, V., (2016). Long-Term Geomorphological History of the Czech Republic. In Pánek, T., Hradecký, J. (Eds.), Landscapes and Landforms of the Czech Republic (pp. 29–39), Springer International. Search in Google Scholar

Pearson, R.G., Dawson, T.P., (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x. Search in Google Scholar

Peldar, J. H., D. W. McKenney, I. Aubin, T. Beardmore, J. Beaulieu, L. Iverson, G. A. O’Neill, R. S. Winder, C. Ste-Marie., (2012). Placing Forestry in the Assisted Migration Debate. BioScience 62 (9): 835–842. https://doi.org/10.1525/bio.2012.62.9.10. Search in Google Scholar

Pfister, R. D., Arno, S. F., (1980). Classifying Forest Habitat Types Based on Potential Climax Vegetation. Forest Science, 26(1), 52–72. Search in Google Scholar

Pitko, J., Plíva, K., (1967). Hospodárske súbory lesných typov a ich využitie. Lesnický časopis, 13(10), 905–924. (In Czech). Search in Google Scholar

Plašienka, D., Grecula, P., Putiš, M., Kováč, M., Hovorka, D., (1997). Evolution and structure of the Western Carpathians: an overview. Geological evolution of the Western Carpathians, 1–24. Search in Google Scholar

Plíva, K., Žlábek, I., (1986). Přírodní lesní oblasti ČSR. Státní zemědělské nakladatelství. Praha. 316 p. (In Czech). Search in Google Scholar

Pogrebnyak, P. S., (1955). Fundamentals of Forest Typology. Publishing House of the Academy of Sciences of the Ukrainian SSR. Kiev. 456 p. Search in Google Scholar

Pojar, J., Klinka, K., Meidinger, D. V., (1987). Biogeoclimatic Ecosystem Classification in British Columbia. Forest Ecology and Management, 22, 119–154. https://doi.org/10.1016/0378-1127(87)90100-9. Search in Google Scholar

QGIS (2022). Ein freies Open-Source-Geographisches-Informationssystem. https://qgis.org/de/site/. Search in Google Scholar

Qiu, H., Cui, P., Regmi, A. D., Wang, Y., Hu, S., (2017). Slope height and slope gradient controls on the loess slide size within different slip surfaces. Physical Geography, 38(4), 303–317. https://doi.org/10.1080/02723646.2017.1284581. Search in Google Scholar

R Core Team., (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Search in Google Scholar

Riley, S. J., DeGloria, S. D., Elliot, R., (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1–4), 23–27. https://doi.org/10.1177/0738894216659843. Search in Google Scholar

RStudio Team, (2020). RStudio: Integrated Development for R. RStudio. http://www.rstudio.com/. Search in Google Scholar

Rusnák, M., Sládek, J., and Kidová, A., (2018). Využite UAV technológie pre klasifikáciu a mapovanie krajiny vo fluviálnej geomorgológii. Geographical Journal, 70(2), 141–160. https://doi.org/10.31577/geogrcas.2018.70.2.08. Search in Google Scholar

Selleck, G. W., (1960). The Climax Concept. Botanical Review, 26(4), 534–545. Search in Google Scholar

Shiferaw, H. M., (2021). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 1–11. https://doi.org/10.1186/s43088-021-00115-w. Search in Google Scholar

Statsoft.com. (2016). STATISTICA 12. http://www.statsoft.com/Products/STATISTICA-Features/Version-12. Search in Google Scholar

Steel, R. G., (1960). A rank sum test for comparing all pairs of treatments. Technometrics, 2(2), 197–207. https://doi.org/10.1080/00401706.1960.10489894. Search in Google Scholar

Sukachev, V. N., (1944). On the principles of genetic classification in biocoenology. Zhur. Obschei. Biol. 5: 213–227 [English translation of full paper by F. Raney, Edited and condensed by R. Daubenmire (1958).] Ecology, 39: 364–367. (In Russian). Search in Google Scholar

Šimek, M., Borůvka, L., Baldrian, P., Bryndová, M., Devetter, M., Drábek, O., Elhottová, D., Háněl, L., Houška, J., Hynšt, J., Chroňáková, A., Jílková, V., Konvalina, P., Kopecký, J., Koubová, A., Kováč, Ľ., Kyselková, M., Lukešová, A., Macková, J., et al., (2019). Živá půda: biologie, ekologie, využívání a degradace půdy. Academia. Praha. 789 p. (In Czech). Search in Google Scholar

Therneau, T., Atkinson, B., Ripley, B., (2013). Rpart: Recursive Partitioning. R Package Version 4.1-3. http://CRAN.R-project.org/package=rpart. Search in Google Scholar

Trevisani, S., Cavalli, M., Marchi, L., (2012). Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin. Geomorphology, 161–162, 26–39. https://doi.org/10.1016/j.geomorph.2012.03.031. Search in Google Scholar

Trnka, M., Hlavinka, P., Možný, M., Semerádová, D., Štěpánek, P., Balek, J., Bartošová, L., Zahradníček, P., Bláhová, M., Skalák, P., Farda, A., Hayes, M., Svoboda, M., Wagner, W., Eitzinger, J., Fischer, M., Žalud, Z., (2020). Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 40(14), 5941-5958. https://doi.org/10.1002/joc.6557. Search in Google Scholar

Tukey, J. W., (1949). Comparing Indivitual Means in the Analysis of Varience. Biometrics, 5(2), 99–114. https://doi.org/10.2307/3001913. Search in Google Scholar

van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., Dowling, T. I., (2007). Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. Forest Ecology and Management, 251(1–2), 94–109. https://doi.org/10.1016/j.foreco.2007.06.012. Search in Google Scholar

Vavříček, D., Kučera, A., (2017). Základy lesnického půdoznalství a výživy lesních dřevin. Lesnická práce. Kostelec nad Černými lesy. 362 p. (In Czech). Search in Google Scholar

Vavříček, D., Ulrich, R., Kučera, A., (2014). Ochrana půdy v těžebně-dopravní činnosti. Mendelova univerzita v Brně. Brno. 99 p. (In Czech). Search in Google Scholar

Viewegh, J., A. Kusbach, Mikeska, M., (2003). Czech forest ecosystem classification. Journal of Forest Science 49 (2): 85-93. https://doi.org/10.17221/4682-JFS. Search in Google Scholar

Volařík, D. (2010). Application of digital elevation model for mapping vegetation tiers. Journal of Forest Science 56 (3): 112-120. https://doi.org/10.17221/74/2009-JFS. Search in Google Scholar

Walter, H., Breckle, S.-W., (2009). Vegetation und Klimazonen: Grundriß der globalen Ökologie (Seventh Edition). Verlag Eugen Ulmer. Ulmer. 544 p. Search in Google Scholar

White, R. E., (1997). Principles and Practice of Soil Science. The Soil as a Natural Resource, (Third Edition). Blackwell Science, Oxford, UK. 152 p. Search in Google Scholar

Whittaker, R. H., (1953). A Consideration of Climax Theory: The Climax as a Population and Pattern. Ecological Monographs, 23(1), 41–78. https://doi.org/10.2307/1943519. Search in Google Scholar

Williams, M. I., Dumroese, R. K., (2013). Preparing for climate change: Forestry and assisted migration. Journal of Forestry, 111(4), 287–297. https://doi.org/10.5849/jof.13-016. Search in Google Scholar

Yokoyama, R., Shirasawa, M., Pike, R. J., (2002). Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogrammetric Engineering and Remote Sensing, 66(3), 257–265. Search in Google Scholar

Zhang, D., Zhou, G., (2016). Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors, 16, 1–29. https://doi.org/10.3390/s16081308. Search in Google Scholar

Zlatník, A. (1975). Ekologie krajiny a geobiocenologie. Vysoká škola zemědělská v Brně. Brno. 172 p. (In Czech). Search in Google Scholar

Zlatník, A. (1976). Přehled skupin typů geobiocénů původně lesních a křovinných. Zprávy Geografického ústavu ČSAV, 13(3-4), 55–64. (In Czech). Search in Google Scholar

Recommended articles from Trend MD