Open Access

A new full-duplex analog RoF transmission system for 5G/5G+ broadband mobile communication


Cite

[1] “3GPP, User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2”, Interworking operation with other radios, TS 38. 101-3 version 16. 0. 0 Release 16, 2019. Search in Google Scholar

[2] G. Xiaohu, T. Song, M. Guoqiang, W. Cheng-Xiang, and H. Tao, “5G ultra-dense cellular networks”, IEEE Wireless Communications, vol. 23, no. 1, pp. 72-79, 2016.10.1109/MWC.2016.7422408 Search in Google Scholar

[3] I. Mehmet and B. Bostjan, “Proposal for distribution of a low-phase-noise oscillator signal in forthcoming fifth-generation mobile network by radio-over-fibre technology”, International Symposium ELMAR, pp. 13-16, 2016. Search in Google Scholar

[4] J. S.Saeed, H. Ashiq, Q. Muhammad Ali, and K. W. Shahid, “Towards the shifting of 5G front haul traffic on passive optical network”, Wireless Personal Communications, vol. 112, no. 3, pp. 1549-1568, 2020. Search in Google Scholar

[5] A. B. Dar, and F. Ahmad, “Optical millimeter-wave generation techniques: An overview”, Optik, vol. 258, pp. 168858, 2022. Search in Google Scholar

[6] K. Dimitrios, B. Thomas, R. Simon, J. Ulf, J. Martin, I. Marianna, S. Bart, and T. Idelfonso, “5G RAN architecture based on analog radio-over-fiber fronthaul over UDWDM-PON and phased array fed reflector antennas”, Optics Communications, vol. 454, pp. 124464, 2020. Search in Google Scholar

[7] K. Reinhard, C. Chrispine, and G. Tim, “Sub-60-GHz power- efficient fronthaul system of up to 16-Gbps using RF carriers generated from a gain-switched VCSEL”, OSA Continuum, vol. 3, no. 12, pp. 3482-3496, 2020. Search in Google Scholar

[8] S. Magidi, and A. Jabeena, “Bidirectional MDRZ downstream and NRZ OOK upstream SS-WDM RoFSO communication system”, Journal of Optical Communications, 2019.10.1515/joc-2019-0002 Search in Google Scholar

[9] G. Aamir, and G. Salman, “Self-phase modulation-based multiple carrier generation for radio over fiber duplex baseband communication”, Photonic Network Communications, vol. 29, no. 2, pp. 133-137, 2015.10.1007/s11107-014-0479-6 Search in Google Scholar

[10] B. Aziz, T. Mehmood, and S. Ghafoor, “UWB over fiber transmission to multiple radio access units using all-optical signal processing”, Photonic Network Communications, vol. 34, no. 2, pp. 280-287, 2017.10.1007/s11107-017-0695-y Search in Google Scholar

[11] T. Mehmood, and S. Ghafoor, “Millimeterwave signal generation and transmission to multiple radio access units by employing nonlinearity of the optical link”, International Journal of Communication Systems, vol. 32, no. 1, pp. 1-11, 2019.10.1002/dac.3830 Search in Google Scholar

[12] L. Sharan, G. Shanbhag, and K. Chaubey, “Design and simulation of modified duobinary modulated 40 Gbps 32 channel DWDM optical link for improved non-linear performance”, Cogent Engineering, vol. 3, no. 1, 2016.10.1080/23311916.2016.1256562 Search in Google Scholar

[13] M. H. Ullah, M. Tareq, H. Ashiq, A. Moustafa, and M. Sanaullah, “FWM reduction using different modulation techniques and optical filters in DWDM optical communication systems: a comparative study”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, no. 3, pp. 479-488, 2019.10.1007/s40998-019-00189-4 Search in Google Scholar

[14] D. Nguyen, and M. Amin, “Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream”, Journal of Optical Communications, vol. 37, no. 2, pp. 155-161, 2016.10.1515/joc-2015-0041 Search in Google Scholar

[15] L. Cheng, C. Hung-Chang, F. Shu-Hao, H. Yu-Ting, L. Jie, Z. Liang, Y. Jianjun, and C. Gee-Kung, “A novel self-mixing duobinary RF receiver for millimeter-wave radio-over-fiber systems”, Optical Fiber Communication Conference, Optical Society of America, 2012. Search in Google Scholar

[16] H. Chien, C. Arshad, and C. Gee-Kung, “Systems and methods for providing an optical information transmission system”, U.S. Patent Application No. 13/035,827. Search in Google Scholar

[17] A. Ahmad, D. Choi, and S. Ullah, “A compact two elements MIMO antenna for 5G communication”, Scientific Reports, vol. 12, no. 1, pp. 1-8, 2022.10.1038/s41598-022-07579-5889743235246591 Search in Google Scholar

[18] H. Yousif, and M. Tahreer, “Relationship between the voltage applied to MZM arms and the generation of optical frequency comb”, International Journal of Engineering & Technology, vol. 7, no. 415, pp. 405-408, 2018.10.14419/ijet.v7i4.15.23026 Search in Google Scholar

[19] H. Jassim, E. Siamak, N. Kamarul, A. Harith, H. Sulaiman, and S. Hossam, “Optical frequency comb generation based on chirping of Mach-Zehnder modulators”, Optics Communications, 344, pp. 139-146, 2015.10.1016/j.optcom.2015.01.054 Search in Google Scholar

[20] Z. Chan, N. Ti-Gang, L. Jing, P. Li, L. Chao, and M. Shaoshuo, “A full-duplex WDM-RoF system based on tunable optical frequency comb generator”, Optics Communications, vol. 344, pp. 65-70, 2015.10.1016/j.optcom.2015.01.038 Search in Google Scholar

[21] R. Thiago, R. Simon, T. Idelfonso, V. Chris, K. George, and P. Nikos, “Analog radio-over-Fiber 5G fronthaul systems: blueS-PACE and 5G-PHOS projects convergence”, European Conference on Networks and Communications (EuCNC,) pp. 479-484, 2019. Search in Google Scholar

[22] S. Redhwan, A. Mohammad, A. Abdulaziz, and A. Samir, “Wireless signals transport schemes in fiber wireless systems”, IEEE 4th International Conference on Photonics (ICP), pp. 47-49, 2013. Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other