Open Access

Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia


Cite

[1] K. El-Boubbou, “Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery”, Nanomedicine, vol. 13, no. 8, pp. 929-952, doi: 10.2217/nnm-2017-0320 2018.10.2217/nnm-2017-0320 Search in Google Scholar

[2] M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, and C. Rinaldi, “Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields”, ACS Nano, vol. 7, no. 6, pp. 5091-5101, doi: 10.1021/nn4007048 2013.10.1021/nn4007048 Search in Google Scholar

[3] C. S. S. R. Kumar, and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery”, Adv. Drug Deliv. Rev, vol. 63, no. 9, pp. 789-808, doi: 10.1016/j.addr.2011.03.008 2011.10.1016/j.addr.2011.03.008 Search in Google Scholar

[4] W. Tao, and et al, “Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics”, Adv. Mater, vol. 30, no. 38, p. 1802061, doi: 10.1002/adma.201802061 2018.10.1002/adma.201802061 Search in Google Scholar

[5] A. Attaluri, and et al, “Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer”, Int. J. Hyperth, vol. 31, no. 4, pp. 359-374, doi: 10.3109/02656736.2015.1005178 2015.10.3109/02656736.2015.1005178 Search in Google Scholar

[6] D. Chang, and et al, “Biologically Targeted Magnetic Hyper-thermia: Potential and Limitations”, Front. Pharmacol, vol. 9, doi: 10.3389/fphar.2018.00831 2018.10.3389/fphar.2018.00831 Search in Google Scholar

[7] W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle”, Phys. Rev, vol. 130, no. 5, pp. 1677-1686, doi: 10.1103/PhysRev.130.1677 1963.10.1103/PhysRev.130.1677 Search in Google Scholar

[8] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field”, J. Magn. Magn. Mater, vol. 252, pp. 370-374, doi: 10.1016/S0304-8853(02)00706-0 2002.10.1016/S0304-8853(02)00706-0 Search in Google Scholar

[9] B. Tigli, “Numerical Analysis Of The Distribution Of Nanoparticles In The Treatment Of Hyperthermia Of Tumors”,, Gazi Üniversitesi, 2019. Search in Google Scholar

[10] R. Dhavalikar, and C. Rinaldi, “Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients”, J. Magn. Magn. Mater, vol. 419, pp. 267-273, doi: 10.1016/j.jmmm.2016.06.038 2016.10.1016/j.jmmm.2016.06.038560425828943706 Search in Google Scholar

[11] P. Cantillon-Murphy, L. L. Wald, E. Adalsteinsson, and M. Zahn, “Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field”, J. Magn. Magn. Mater, vol. 322, no. 6, pp. 727-733, doi: 10.1016/j.jmmm.2009.10.050 2010.10.1016/j.jmmm.2009.10.050281134220161608 Search in Google Scholar

[12] J. L. Ristic-Djurovic, and et al, “Design and Optimization of Electromagnets for Biomedical Experiments With Static Magnetic and ELF Electromagnetic Fields”, IEEE Trans. Ind. Electron, vol. 65, no. 6, pp. 4991-5000, doi: 10.1109/TIE.2017.2772158 2018.10.1109/TIE.2017.2772158 Search in Google Scholar

[13] S. Huang, Z. H. Ren, S. Obruchkov, J. Gong, R. Dykstra, and W. Yu, “Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays”, Investig. Magn. Reson. Imaging, vol. 23, no. 3, p. 179, doi: 10.13104/imri.2019.23.3.179 2019.10.13104/imri.2019.23.3.179 Search in Google Scholar

[14] Z. Li, and et al, “Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting”, Int. J. Mech. Sci, vol. 198, p. 106363, doi: 10.1016/j.ijmecsci.2021.106363 2021.10.1016/j.ijmecsci.2021.106363 Search in Google Scholar

[15] T. O. Tasci, I. Vargel, A. Arat, E. Guzel, P. Korkusuz, and E. Atalar, “Focused RF hyperthermia using magnetic fluids”, Med. Phys, vol. 36, no. 5, pp. 1906-1912, doi: 10.1118/1.3106343 2009.10.1118/1.3106343273671119544810 Search in Google Scholar

[16] Y. Lu, and et al, “Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image- guided treatment”, Int. J. Hyperth, vol. 37, no. 3, pp. 141-154, doi: 10.1080/02656736.2020.1853252 2020.10.1080/02656736.2020.185325233426994 Search in Google Scholar

[17] M. Ma, Y. Zhang, X. Shen, J. Xie, Y. Li, and N. Gu, “Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields”, Nano Res, vol. 8, no. 2, pp. 600610, doi: 10.1007/s12274-015-0729-7 2015.10.1007/s12274-015-0729-7 Search in Google Scholar

[18] D. L. Trumper, M. E. Williams, and T. H. Nguyen, “Magnet arrays for synchronous machines,¿—”, Conference Record of the IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, pp. 9-18, doi: 10.1109/IAS..298897 1993. Search in Google Scholar

[19] L. M. Bauer, S. F. Situ, M. A. Griswold, and A. C. S. Samia, “High-performance iron oxide nanoparticles for magnetic particle imaging guided hyperthermia (hMPI)”, Nanoscale, vol. 8, no. 24, pp. 12162-12169, doi: 10.1039/C6NR01877G 2016.10.1039/C6NR01877G27210742 Search in Google Scholar

[20] Q. Zhao, and et al, “Magnetic Nanoparticle-Based Hyperthermia for Head dnd Neck Cancer in Mouse Models”, Theranostics, vol. 2, no. 1, pp. 113-121, doi: 10.7150/thno. 3854 2012. Search in Google Scholar

[21] V. Vilas-Boas, F. Carvalho, and B. Espia, “Magnetic Hyper-thermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies”, Molecules, vol. 25, no. 12, p. 2874, doi: 10.3390/molecules25122874 2020.10.3390/molecules25122874736221932580417 Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other