Open Access

Design and implementation of a nano magnetic logic barrel shifter using beyond-CMOS technology


Cite

[1] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata”, Nanotechnology, vol. 4, no. 1, pp. 49-57, 1993.10.1088/0957-4484/4/1/004 Search in Google Scholar

[2] R. P. Cowburn and M. E. Welland, “Room Temperature Magnetic Quantum Cellular Automata”, Science, vol. 287, no. 5457, pp. 1466-1468, 2000.10.1126/science.287.5457.1466 Search in Google Scholar

[3] G. Csaba and W. Porod, “Behavior of nanomagnet Logic in the presence of thermal noise”, International Workshop on Computational Electronics, pp. 1-4, 2010.10.1109/IWCE.2010.5677954 Search in Google Scholar

[4] M. T. Niemier and P. M. Kogge, “Problems in designing with qcas: Layout= timing”, International Journal of Circuit Theory and Applications, vol. 29, pp. 49-62, 2001.10.1002/1097-007X(200101/02)29:1<49::AID-CTA132>3.0.CO;2-1 Search in Google Scholar

[5] M. Momenzadeh, J. Huang, M. B. Tahoori, and F. Lombardi, “On the evaluation of scaling of qca devices in the presence of defects at manufacturing”, IEEE transactions on nanotechnology, no. 4, pp. 740-743, 2005.10.1109/TNANO.2005.858611 Search in Google Scholar

[6] M. Raj, L. Gopalakrishnan, and S.-B. Ko, “Design and analysis of novel qca full adder-subtractor”, International Journal of Electronics Letters, pp. 1-14, 2020.10.1080/21681724.2020.1726479 Search in Google Scholar

[7] M. Vacca, S. Frache, M. Graziano. F. Riente, G. Turvani, M. R. Roch, and M. Zamboni, “ToPoliNano: nanomagnet logic circuits design and simulation, Field-Coupled nanocomputing”, Springer, pp. 274-306, 2014.10.1007/978-3-662-45908-9_12 Search in Google Scholar

[8] G. Csaba, M. Becherer, and W. Porod, “Development of cad tools for nano magnetic logic devices,”, International Journal of Circuit Theory and Applications, vol. 41, pp. 634-645, 2013.10.1002/cta.1811 Search in Google Scholar

[9] G. Turvani, L. DAlessandro, and M. Vacca, “Physical simulations of high speed and low power nano magnet logic circuits”, Journal of Low Power Electronics and Applications, no. 8, pp. 37, 2018.10.3390/jlpea8040037 Search in Google Scholar

[10] U. Garlando, M. Walter, R. Wille, F. Riente, F. S. Torres, and R. Drechsler, “ToPoliNano and fiction: Design tools for field-coupled nanocomputing”, 23rd Euromicro Conference on Digital System Design (DSD), IEEE, pp. 408-415, 2020.10.1109/DSD51259.2020.00071 Search in Google Scholar

[11] U. Garlando, F. Riente, G. Cirillo, M. Graziano. and M. Zamboni, “Design and characterization of circuit based on emerging technology: the magcad approach,”, IEEE 18th International Conference on nanotechnology (IEEE-NANO), pp. 1-4, 2018.10.1109/NANO.2018.8626232 Search in Google Scholar

[12] G. Turvani, A. Tohti, M. Bollo, F. Riente, M. Vacca, M. Graziano. and M. Zamboni, “Physical design and testing of nano magnetic architectures”, 9th IEEE International Conference on Design & Technology of Integrated Systems in nanoscale Era (DTIS), pp. 1-6, 2014.10.1109/DTIS.2014.6850676 Search in Google Scholar

[13] U. Garlando, F. Riente, D. Vergallo, M. Graziano. and M. Zamboni, “TopoliNano & magcad: A complete framework for design and simulation of digital circuits based on emerging technologies”, 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD,), IEEE, pp. 153-156, 2018.10.1109/SMACD.2018.8434919 Search in Google Scholar

[14] G. Turvani, F. Riente, M. Graziano. and M. Zamboni, “A quantitative approach to testing in quantum dot cellular automata: nanomagnet logic case”, 10th Conference on PhD Research in Microelectronics and Electronics (PRIME), IEEE, pp. 1-4, 2014.10.1109/PRIME.2014.6872680 Search in Google Scholar

[15] F. Cairo, M. Vacca, M. Graziano. and M. Zamboni, “Domain magnet logic (dml): A new approach to magnetic circuits”, 14th International Conference on nanotechnology, IEEE, pp. 956-961, 2014.10.1109/NANO.2014.6968053 Search in Google Scholar

[16] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano. “ToPoliNano: A cad tool for nano magnetic logic”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, pp. 1061-1074, 2017.10.1109/TCAD.2017.2650983 Search in Google Scholar

[17] J. Wang, M. Vacca, M. Graziano, M. RuoRoch, and M. Zamboni, “Biosequences analysis on nano magnet logic”, Proceedings of International Conference on IC Design & Technology (ICICDT), IEEE, pp. 131-134, 2013.10.1109/ICICDT.2013.6563320 Search in Google Scholar

[18] M. Graziano, M. Vacca, A. Chiolerio, and M. Zamboni, “An ncl-hdl snake-clock-based magnetic qca architecture”, IEEE Transactions on nanotechnology, no. 10, pp. 1141-1149, 2011.10.1109/TNANO.2011.2118229 Search in Google Scholar

[19] I. Hanninen, H. Lu, E. Blair, C. Lent, and G. Snider, “Field-coupled nanocomputing: Paradigms, progress, and perspectives”, Springer, 2014. Search in Google Scholar

[20] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “Qcadesigner: A rapid design and simulation tool for quantum-dot cellular automata”, IEEE transactions on nanotechnology, no. 3, pp. 26-31, 2004.10.1109/TNANO.2003.820815 Search in Google Scholar

[21] M. Vacca, M. Graziano, L. Di Crescenzo, A. Chiolerio, A. Lamberti, D. Balma, G. Canavese, F. Celegato, E. Enrico, P. Tiberto, et al, “Magnetoelastic clock system for nano magnet logic”, IEEE Transactions on nanotechnology, no. 13, pp. 963-973, 2014.10.1109/TNANO.2014.2333657 Search in Google Scholar

[22] G. Turvani, F. Riente, M. Graziano, and M. Zamboni, “A quantitative approach to testing in Quantum dot Cellular Automata: nanoMagnet Logic case”, 10th Conference on PhD Research in Microelectronics and Electronics (PRIME), pp. 1-4, 2014.10.1109/PRIME.2014.6872680 Search in Google Scholar

[23] M. Cofano, M. Santoro, Vacca, D. Pala, G. Causapruno, F. Cairo, F. Riente, G. Turvani, M. R. Roch, M. Graziano, et al, “Logic-in-memory, A nano magnet logic implementation”, IEEE Computer Society Annual Symposium on VLSI, IEEE, pp. 286-291, 2015.10.1109/ISVLSI.2015.121 Search in Google Scholar

[24] M. T. Alam, M. J. Siddiq, G. H. Bernstein, M. Niemier, W. Porod, and X. S. Hu, “On-chip clocking for nano magnet logic devices”, IEEE Transactions on nanotechnology,, no. 9, pp. 348-351, 2010.10.1109/TNANO.2010.2041248 Search in Google Scholar

[25] M. Vacca, F. Cairo, G. Turvani, F. Riente, M. Zamboni, and M. Graziano, “Virtual clocking for nano magnet logic”, IEEE Transactions on nanotechnology, no. 15, pp. 962-970, 2016.10.1109/TNANO.2016.2617866 Search in Google Scholar

[26] G. Causapruno, F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano, “Reconfigurable systolic array: From architecture to physical design for nml”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, no. 24, pp. 3208-3217, 2016.10.1109/TVLSI.2016.2547422 Search in Google Scholar

[27] I. Voyiatzis, “An alu-based bist scheme for word-organized rams”, IEEE Transactions on Computers, vol. 57, pp. 577-590, 2008.10.1109/TC.2007.70835 Search in Google Scholar

[28] Y. Guo, T. Dee, and A. Tyagi, “Barrel shifter physical unclonable function based encryption”, Cryptography 2, 22, 2018.10.3390/cryptography2030022 Search in Google Scholar

[29] Z. Li, G. Zhang, W. Zhang, H. Chen, and M. Perkowski, “Synthesis of quantum barrel shifters”, ternational Conference on Cloud Computing and Security, Springer, pp. 450-462, 2018.10.1007/978-3-030-00015-8_39 Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other