1. bookVolume 70 (2019): Issue 7 (December 2019)
    Special Issue
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
Open Access

Temperature dependent dispersion models applicable in solid state physics

Published Online: 28 Sep 2019
Volume & Issue: Volume 70 (2019) - Issue 7 (December 2019) - Special Issue
Page range: 1 - 15
Received: 19 Mar 2019
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

[1] F. Wooten, Optical Properties of Solids, New York: Academic Press, 1972.Search in Google Scholar

[2] E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: Applications to aluminum”, Phys. Rev. B, vol. 22, pp. 1612–1628, 1980.Search in Google Scholar

[3] D. Y. Smith, “Dispersion theory, sum rules, and their application to the analysis of optical data”, In: Handbook of Optical Constants of Solids (E. D. Palik, ed.), vol. 1, pp. 35–68, Academic Press, 1985.10.1016/B978-0-08-054721-3.50008-3Search in Google Scholar

[4] V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research, Berlin: Springer, 2005.Search in Google Scholar

[5] M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge: University Press, 2002.10.1017/CBO9780511606168Search in Google Scholar

[6] D. Franta, D. Nečas, and L. Zajíčková, “Application of Thomas-Reiche-Kuhn sum rule to construction of advanced dispersion models”, Thin Solid Films, vol. 534, pp. 432–441, 2013.10.1016/j.tsf.2013.01.081Search in Google Scholar

[7] D. Franta, J. Vohánka, and M. Čermák, “Universal dispersion model for characterization of thin films over wide spectral range”, In: Optical Characterization of Thin Solid Films (O. Stenzel and M. Ohlídal, eds.), vol. 64, pp. 31–82, Springer, 2018.10.1007/978-3-319-75325-6_3Search in Google Scholar

[8] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Broadening of dielectric response and sum rule conservation”, Thin Solid Films, vol. 571, pp. 496–501, 2014.10.1016/j.tsf.2013.11.148Search in Google Scholar

[9] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Utilization of the sum rule for construction of advanced dispersion model of crystalline silicon containing interstitial oxygen”, Thin Solid Films, vol. 571, pp. 490–495, 2014.10.1016/j.tsf.2014.03.059Search in Google Scholar

[10] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Dispersion model of two-phonon absorption: application to c-Si”, Opt. Mater. Express, vol. 4, pp. 1641–1656, 2014.Search in Google Scholar

[11] D. Franta, A. Dubroka, C. Wang, A. Giglia, J. Vohánka, P. Franta, and I. Ohlídal, “Temperature-dependent dispersion model of oat zone crystalline silicon”, Appl. Surf. Sci., vol. 421, pp. 405–419, 2017.10.1016/j.apsusc.2017.02.021Search in Google Scholar

[12] D. Franta, P. Franta, J. Vohánka, M. Čermák, and I. Ohlídal, “Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region”, J. Appl. Phys., vol. 123, pp. 185707, 2018.Search in Google Scholar

[13] ISO 1:2016 – Geometrical product specifications (GPS) – Standard reference temperature for the specification of geometrical and dimensional properties.Search in Google Scholar

[14] D. Franta, D. Nečas, et al, Software for optical characterization newAD2, http://newad.physics.muni.cz.Search in Google Scholar

[15] H. Ibach, “Thermal Expansion of Silicon and Zinc Oxide (I)”, Phys. Status Solidi, vol. 31, pp. 625–634, 1969.10.1002/pssb.19690310224Search in Google Scholar

[16] T. Middelmann, A. Walkov, G. Bartl, and R. Schödel, “Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K”, Phys. Rev. B, vol. 92, pp. 174113, 2015.Search in Google Scholar

[17] M. K. Gupta, R. Mittal, B. Singh, S. K. Mishra, D. T. Adroja, A. D. Fortes, and S. L. Chaplot, “Phonons and anomalous thermal expansion behavior of H2O and D2O ice Ih”, Phys. Rev. B, vol. 98, pp. 104301, 2018.Search in Google Scholar

[18] G. K. White, “Thermal expansion of reference materials: copper, silica and silicon”, J. Phys. D Appl. Phys., vol. 6, pp. 2070–2078, 1973.Search in Google Scholar

[19] T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleightoddini, “Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 “, Science, vol. 272, pp. 90–92, 1996.10.1126/science.272.5258.90Search in Google Scholar

[20] B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman, and A. P. Wilkinson, “Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3 “, J. Am. Chem. Soc., vol. 132, pp. 15496–15498, 2010.Search in Google Scholar

[21] H. Watanabe, N. Yamada, and M. Okaji, “Linear thermal expansion coeficient of silicon from 293 to 1000 K”, Int. J. Thermophys., vol. 25, pp. 221–236, 2004.10.1023/B:IJOT.0000022336.83719.43Search in Google Scholar

[22] M. Balkanski, “Photon-phonon interactions in solids”, In: Optical properties of solids (F. Abeles, ed.), pp. 529–651, 1972.Search in Google Scholar

[23] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer, 2001.Search in Google Scholar

[24] C. Kittel, Introduction to Solid State Physics, New York: Wiley, 5th ed., 1976.Search in Google Scholar

[25] G. G. Macfarlane and V. Roberts, “Infrared absorption of silicon near the lattice edge”, Phys. Rev., vol. 98, pp. 1865–1866, 1955.Search in Google Scholar

[26] D. Franta, M. Čermák, J. Vohánka, and I. Ohlídal, “Dispersion models describing interband electronic transitions combining Tauc’s law and Lorentz model”, Thin Solid Films, vol. 631, pp. 12–22, 2017.10.1016/j.tsf.2017.03.051Search in Google Scholar

[27] D. Campi and C. Coriasso, “Prediction of optical properties of amorphous tetrahedrally bounded materials”, J. Appl. Phys., vol. 64, pp. 4128–4134, 1988.Search in Google Scholar

[28] G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., vol. 69, pp. 371–373, 1996.10.1063/1.118064Search in Google Scholar

[29] G. E. Jellison, Jr. and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., vol. 69, pp. 2137, 1996.10.1063/1.118155Search in Google Scholar

[30] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics”, J. Appl. Phys., vol. 92, pp. 2424–2436, 2002.Search in Google Scholar

[31] D. Franta, D. Nečas, I. Ohlídal, and A. Giglia, “Dispersion model for optical thin fims applicable in wide spectral range”, In: Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, vol. 9628 of Proc. SPIE, pp. 96281U, 2015.Search in Google Scholar

[32] D. Franta, D. Nečas, I. Ohlídal, and A. Giglia, “Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range”, In: Photonics Europe 2016: Optical Micro- and Nanometrology VI, vol. 9890 of Proc. SPIE, pp. 989014, 2016.Search in Google Scholar

[33] D. Franta, D. Nečas, A. Giglia, P. Franta, and I. Ohlídal, “Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium uoride”, Appl. Surf. Sci., vol. 421, pp. 424–429, 2017.10.1016/j.apsusc.2016.09.149Search in Google Scholar

[34] P. B. Allen and M. Cardona, “Theory of the temperature dependence of the direct gap of germanium”, Phys. Rev. B, vol. 23, 1981.10.1103/PhysRevB.23.1495Search in Google Scholar

[35] L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium”, Phys. Rev. B, vol. 30, pp. 1979–1991, 1984.Search in Google Scholar

[36] P. Lautenschlager, P. B. Allen, and M. Cardona, “Temperature dependence of band gaps in Si and Ge”, Phys. Rev. B, vol. 31, pp. 2163–2171, 1985.Search in Google Scholar

[37] P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon”, Phys. Rev. B, vol. 36, pp. 4821–4830, 1987.Search in Google Scholar

[38] H. L. Smith, Y. Shen, D. S. Kim, F. C. Yang, C. P. Adams, C. W. Li, D. L. Abernathy, M. B. Stone, and B. Fultz, “Temperature dependence of phonons in FeGe2 “, Phys. Rev. Mater., vol. 2, pp. 103602, 2018.Search in Google Scholar

[39] C. Keffer, T. M. Hayes, and A. Bienenstock, “PbTe Debye-Waller factors and band-gap temperature dependence”, Phys. Rev. Lett., vol. 21, pp. 1676–1678, 1968.Search in Google Scholar

[40] H. Haas, C. Z. Wang, K. M. Ho, M. Fähnle, and C. Elsässer, “Temperature dependence of the phonon frequencies of molybdenum: a tightbinding molecular dynamics study”, J. Phys. Condes. Matter, vol. 11, pp. 5455–5462, 1999.Search in Google Scholar

[41] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium”, In: Optomechanical Technologies for Astronomy, vol. 6237 of Proc. SPIE, pp. 62732J, 2006.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo