1. bookVolume 7 (2018): Issue 2 (May 2018)
Journal Details
License
Format
Journal
eISSN
2336-9205
First Published
11 Mar 2014
Publication timeframe
3 times per year
Languages
English
access type Open Access

Forecasting using a Nonlinear DSGE Model

Published Online: 14 May 2018
Volume & Issue: Volume 7 (2018) - Issue 2 (May 2018)
Page range: 73 - 98
Received: 04 Jul 2017
Accepted: 06 Oct 2017
Journal Details
License
Format
Journal
eISSN
2336-9205
First Published
11 Mar 2014
Publication timeframe
3 times per year
Languages
English
Abstract

A medium-scale nonlinear dynamic stochastic general equilibrium (DSGE) model was estimated (54 variables, 29 state variables, 7 observed variables). The model includes an observed variable for stock market returns. The root-mean square error (RMSE) of the in-sample and out-of-sample forecasts was calculated. The nonlinear DSGE model with measurement errors outperforms AR (1), VAR (1) and the linearised DSGE in terms of the quality of the out-of-sample forecasts. The nonlinear DSGE model without measurement errors is of a quality equal to that of the linearised DSGE model.

Keywords

JEL Classification

1. Adolfson M., Lindé J., and Villani M. (2007). Forecasting performance of an open economy DSGE model. Econometric Reviews, 26(2-4), 289-328.10.1080/07474930701220543Open DOISearch in Google Scholar

2. Alstadheim, R., Bjornland, H.C. and Maih, J. (2013). Do central banks respond to exchange rate movements? A Markov-switching structural investigation. Working Paper 2013/24, Norges Bank.10.2139/ssrn.2353019Search in Google Scholar

3. Amisano G. and Tristani O. (2010). Euro area inflation persistence in an estimated nonlinear DSGE model. Journal of Economic Dynamics and Control, 34(10), 1837-1858.10.1016/j.jedc.2010.05.001Search in Google Scholar

4. Andreasen, M. M. (2013). Non-Linear DSGE Models and the Central Difference Kalman Filter. Journal of Applied Econometrics, 28(6), 929-955.Search in Google Scholar

5. An S. and Schorfheide F. (2007). Bayesian analysis of DSGE models // Econometric Reviews, 26(2-4), 113-172.10.1080/07474930701220071Open DOISearch in Google Scholar

6. Balcilar M., Gupta R., and Kotze K. (2014). Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model. Economic Modelling, 44(1), 215-228.Search in Google Scholar

7. Balcilar, M., Gupta, R., and Kotze, K. (forthcoming). Forecasting South African Macroeconomic Variables with a Markov-Switching Small Open-Economy Dynamic Stochastic General Equilibrium Model. Empirical Economics.Search in Google Scholar

8. Collard F. and Juillard M. (2001). Accuracy of stochastic perturbation methods: The case of asset pricing models. Journal of Economic Dynamics and Control, 25(6-7), 979-999.10.1016/S0165-1889(00)00064-6Search in Google Scholar

9. Del Negro M., Schorfheide F. (2012). DSGE model-based forecasting. Staff Reports from Federal Reserve Bank of New York, No 554.10.2139/ssrn.2018451Search in Google Scholar

10. Doh T., 2011. Yield curve in an estimated nonlinear macro model. Journal of Economic Dynamics and Control, 35(8), 1229-1244.10.1016/j.jedc.2011.03.003Search in Google Scholar

11. Farmer, R.E., Waggoner, D.F. and Zha, T. (2009). Understanding Markov-switching rational expectations models. Journal of Economic Theory, 144(5), 1849-1867.10.1016/j.jet.2009.05.004Search in Google Scholar

12. Farmer, R.E., Waggoner, D.F. and Zha, T. (2011). Minimal state variable solutions to Markov-switching rational expectations models. Journal of Economic Dynamics and Control, 35(12), 2150-2166.10.1016/j.jedc.2011.08.005Search in Google Scholar

13. Fernandez-Villaverde J., Guerron P.A., Rubio-Ramirez J.F. (2010). Reading the recent monetary history of the United States, 1959-2007. Federal Reserve Bank of St. Louis Review, 92(4), 311-338.10.20955/r.92.311-38Search in Google Scholar

14. Fernandez-Villaverde, J., and Rubio-Ramirez, J.F. (2007). Estimating Macroeconomic Models: A Likelihood Approach. Review of Economic Studies, 74(4), 1059-1087.10.1111/j.1467-937X.2007.00437.xOpen DOISearch in Google Scholar

15. Gust C., Lopez-Salido D., Smith M. E. (2012). The empirical implications of the interest-rate lower bound. No 2012-83, Finance and Economics Discussion Series from Board of Governors of the Federal Reserve System (U.S.).Search in Google Scholar

16. Hall J. (2012). Consumption dynamics in general equilibrium. MPRA Paper from University Library of Munich, Germany.Search in Google Scholar

17. Herbst, E., and Schorfheide, F. (2016). Tempered Particle Filtering. PIER Working Paper 16-017.Search in Google Scholar

18. Ivashchenko S. (2013). Dynamic stochastic general equilibrium model with banks and endogenous defaults of firms. Journal of the New Economic Association, 19(3), 27-50.Search in Google Scholar

19. Ivashchenko S. (2014). DSGE model estimation on the basis of second-order approximation. Computational Economics, 43(1), 71-82.10.1007/s10614-013-9363-1Open DOISearch in Google Scholar

20. Kim J., Kim S., Schaumburg E., Sims C. (2008). Calculating and using second-order accurate solutions of discrete-time dynamic equilibrium models. Journal of Economic Dynamics and Control, 32, 3397-3414.10.1016/j.jedc.2008.02.003Search in Google Scholar

21. Kollmann R. (2014). Tractable latent state filtering for non-linear DSGE models using a second-order approximation and pruning. Computational Economics, DOI 10.1007/s10614-013-9418-310.1007/s10614-013-9418-3Open DOISearch in Google Scholar

22. Liu, P. and Mumtaz, H. (2011). Evolving Macroeconomic Dynamics in a Small Open Economy: An Estimated Markov Switching DSGE Model for the UK. Journal of Money, Credit and Banking, 43(7), 1443-1474.10.1111/j.1538-4616.2011.00431.xOpen DOISearch in Google Scholar

23. Liu, Z., Waggoner, D. and Zha, T. (2009). Asymmetric Expectation Effects of Regime Shifts in Monetary Policy. Review of Economic Dynamics, 12(2), 284-303.10.1016/j.red.2008.10.001Open DOISearch in Google Scholar

24. Liu, Z., Waggoner, D.F. and Zha, T. (2011). Sources of macroeconomic fluctuations: A regime- switching DSGE approach. Quantitative Economics, 2(2), 251-301.10.3982/QE71Search in Google Scholar

25. Lombardo G., Vestin D. (2008). Welfare implications of Calvo vs. Rotemberg-pricing assumptions. Economics Letters, 100(2), 275-279.10.1016/j.econlet.2008.02.008Open DOISearch in Google Scholar

26. McCracken M. (2007). Asymptotics for out of sample tests of Granger causality. Journal of Econometrics, 2007, vol. 140, issue 2, pages 719-75210.1016/j.jeconom.2006.07.020Search in Google Scholar

27. Pichler P. (2008). Forecasting with DSGE models: The Role of nonlinearities. The B.E. Journal of Macroeconomics, 8(1), 1-35.10.2202/1935-1690.1675Search in Google Scholar

28. Rubaszek M., Skrzypczyński P. (2008). On the forecasting performance of a small-scale DSGE model. International Journal of Forecasting, 24(3), 498-512.10.1016/j.ijforecast.2008.05.002Open DOISearch in Google Scholar

29. Ruge-Murcia F.J. (2012). Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles. Journal of Economic Dynamics and Control, 36(6), 914-938.10.1016/j.jedc.2012.01.008Search in Google Scholar

30. Schmitt-Grohe S., Uribe M. (2004). Solving dynamic general equilibrium models using a second-order approximation to the policy function. Journal of Economic Dynamics and Control, 28(4), 755-775.10.1016/S0165-1889(03)00043-5Search in Google Scholar

31. Smets F.R., Wouters R. (2004). Forecasting with a Bayesian DSGE model: An Application to the Euro area. Journal of Common Market Studies, 42(4), 841-867.10.1111/j.0021-9886.2004.00532.xSearch in Google Scholar

32. Tovar C. E. (2009). DSGE models and central banks. Economics-The Open-Access, Open-Assessment E-Journal, 3(16), 1-31.10.5018/economics-ejournal.ja.2009-16Search in Google Scholar

33. Wickens M.R. (2008). Macroeconomic Theory–A Dynamic General Equilibrium Approach. Princeton University Press: Princeton, NJ.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo