Open Access

COVID-19: Some Pathophysiological and Endocrine Aspects


Cite

1. World Health Organization. Coronavirus disease 2019 (COVID-19). Situation report – 51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209.pdf Search in Google Scholar

2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-CoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4)536-44.10.1038/s41564-020-0695-z709544832123347 Search in Google Scholar

3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223): 507-13.10.1016/S0140-6736(20)30211-7713507632007143 Search in Google Scholar

4. Lu R, Zhao X, Li J, Niu P, Bo J, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224): 565-74.10.1016/S0140-6736(20)30251-8715908632007145 Search in Google Scholar

5. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARSCoV-2 genomes. Proc Natl Acad Sci USA 2020;117(17):9241-43.10.1073/pnas.2004999117719676232269081 Search in Google Scholar

6. Li F. Structure, function and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237–61.10.1146/annurev-virology-110615-042301545796227578435 Search in Google Scholar

7. Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.10.1016/j.cell.2020.02.058710259932155444 Search in Google Scholar

8. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARSCoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2):271-80.10.1016/j.cell.2020.02.052710262732142651 Search in Google Scholar

9. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012-15.10.1126/science.abb7314716467932303590 Search in Google Scholar

10. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251-54.10.1038/nature12005709532623486063 Search in Google Scholar

11. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-37.10.1002/path.1570716772015141377 Search in Google Scholar

12. Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216(2):R1-R17.10.1530/JOE-12-034123092879 Search in Google Scholar

13. Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta. 2005;1751(1):2-8.10.1016/j.bbapap.2004.10.010710524316054014 Search in Google Scholar

14. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258-63.10.1073/pnas.143286910016621612829792 Search in Google Scholar

15. Horiuchi M, Akishita M, Dzau V. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension. 1999;33–2№:613-21.10.1161/01.HYP.33.2.613 Search in Google Scholar

16. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger J. Trilogy of ACE2: a peptidase in the reninangiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128(1):119-28.10.1016/j.pharmthera.2010.06.003711267820599443 Search in Google Scholar

17. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422-26.10.1186/s13054-020-03120-0735613732660650 Search in Google Scholar

18. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47.10.2353/ajpath.2007.061088182944817392154 Search in Google Scholar

19. Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, et al. Histopathology of Middle East Respiratory Syndrome coronovirus (MERS-CoV) infection-clinicopathological and ultrastructural study. Histopathology. 2018;72(3):516-24.10.1111/his.13379716551228858401 Search in Google Scholar

20. Wei L, Sun S; Zhang J; Zhu H; Xu Y; Ma Q, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88(4):723-30.10.1139/O10-02220651845 Search in Google Scholar

21. Lisco G, Tullio A, Stragapede A, Solimando A, Albanese F, Capobianco М, et al. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J Clin Med.2021;10(13):2920-27.10.3390/jcm10132920826933134209964 Search in Google Scholar

22. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327-31. Search in Google Scholar

eISSN:
1313-9053
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Ophthalmology, Public Health, Pharmacy, Clinical Pharmacy