Cite

1. Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und Psychish-Gerichtliche Medizin 1907;64:146-18.Search in Google Scholar

2. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018;14:367–429.10.1016/j.jalz.2018.02.001Search in Google Scholar

3. Tanzi RE. The genetics of Alzheimer’s disease. Cold Spring Harb Perspect Med. 2012; 2(10):pii:a006296. doi: 10.1101/cshperspect. a006296Search in Google Scholar

4. van der Flier WM, Pijnenburg YAL, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE epsilon 4 allele”, Lancet Neurol. 2011;10(3):280-8.Search in Google Scholar

5. Wisniewski T, Dowjat WK, Buxbaum JD, Khorkova O, Efthimiopoulos S, Kulczycki J, Lojkowska W, Wegiel J, Wisniewski HM, Frangione B. A novel polish presenilin-1 mutation (P117L) is associated with familial Alzheimer’s disease and leads to death as early as the age of 28 years. NeuroReport. 1998;9(2):217–21.10.1097/00001756-199801260-00008Search in Google Scholar

6. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD. A familial Alzheimer’s disease locus on chromosome 1. Science. 1995;269(5226):970-3.10.1126/science.7638621Search in Google Scholar

7. St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, Foncin JF, Montesi M, Bruni A, Sorbi S. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14, Nat Genet. 1992;2(4),330-4.Search in Google Scholar

8. Lambert JC, Amouyel P. Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev. 2011;21:295–301.Search in Google Scholar

9. Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–98.10.1016/0896-6273(91)90052-2Search in Google Scholar

10. 10. Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 2009;284:12845–52.10.1074/jbc.M808759200Search in Google Scholar

11. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60.10.1038/s41583-019-0132-6Search in Google Scholar

12. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.10.1016/0165-6147(91)90609-VSearch in Google Scholar

13. Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu Z, Sun H, Fan Y, Dong Y, Yang J, Shi C, Xu Y. New Insights Into the Pathogenesis of Alzheimer’s Disease. Front Neurol. 2020;10:1312.doi: 10.3389/fneur.2019.01312.10.3389/fneur.2019.01312696506731998208Search in Google Scholar

14. Coronel R, Bernabeu-Zornoza A, Palmer C, Muniz-Moreno M, Zambrano A, Cano E, Liste I. Role of amyloid precursor protein (APP) and its derivatives in the biology and cell fate specification of neural stem cells. Mol Neurobiol. 2018;55:7107–17.10.1007/s12035-018-0914-229383688Search in Google Scholar

15. Wiltfang J, Esselmann H, Bibl M, Smirnov A, Otto M, Paul S, Schmidt B, Klafki HW, Maler M, Dyrks T, Bienert M, Beyermann M, Rüther E, Kornhuber J. Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1-37/38/39 in addition to 1-40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J Neurochem. 2002;81:481-96.10.1046/j.1471-4159.2002.00818.x12065657Search in Google Scholar

16. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13:45-53.10.1016/0896-6273(94)90458-8Search in Google Scholar

17. Suzuki N, Iwatsubo T, Odaka A, Ishibashi Y, Kitada C, Ihara Y. High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy. Am J Pathol. 1994; 145:452-60.Search in Google Scholar

18. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–52.10.1126/science.1091230Search in Google Scholar

19. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.10.1126/science.1072994Search in Google Scholar

20. Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol. 2012;22:496–508.10.1016/j.conb.2012.01.007Search in Google Scholar

21. Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V, Boom A, Mansour S, Leroy K, Ando K, Brion JP. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol. 2019;137:397–412.10.1007/s00401-018-1953-5Search in Google Scholar

22. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293:1487-91.10.1126/science.1058189Search in Google Scholar

23. Götz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293:1491-5.10.1126/science.1062097Search in Google Scholar

24. Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96:529–43.10.1016/j.nlm.2011.08.003Search in Google Scholar

25. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J. Soluble amyloid beta peptide conentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853-62.10.1016/S0002-9440(10)65184-XSearch in Google Scholar

26. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572-80.10.1002/ana.4103004101789684Search in Google Scholar

27. Johansson A-S. Amyloid-β Protofibril Formation and Neurotoxicity. Implications for Alzheimer’s Disease. Acta Universitatis Upsaliensis, Uppsala, 2007. ISBN 978-91-554-6827-9.Search in Google Scholar

28. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA. 1988;85:4884–8.10.1073/pnas.85.13.4884Search in Google Scholar

29. Regan P, Whitcomb DJ, Cho K. Physiological and pathophysiological implications of synaptic tau. Neuroscientist. 2017;23:137–51.10.1177/1073858416633439Search in Google Scholar

30. Jean DC, Baas PW. It cuts two ways: microtubule loss during Alzheimer disease. Embo J. 2013;32:2900-2.10.1038/emboj.2013.219Search in Google Scholar

31. Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T, Murayama M, Seok H, Sotiropoulos I, Kim E, Collingridge GL, Takashima A, Cho K. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130144.10.1098/rstb.2013.0144Search in Google Scholar

32. Jara C, Aranguiz A, Cerpa W, Tapia-Rojas C, Quintanilla RA. Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol. 2018;18:279-94.10.1016/j.redox.2018.07.010Search in Google Scholar

33. Lace GL, Wharton SB, Ince PG. A brief history of tau: the evolving view of the microtubule-associated protein tau in neurodegenerative diseases. Clin Neuropathol. 2007;26(2):43-58.10.5414/NPP26043Search in Google Scholar

34. Kril JJ, Patel S, Harding AJ, Halliday GM. Neuron loss from Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol. (Berlin) 2002;103:370-376.Search in Google Scholar

35. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berlin) 1991;82:239-59.Search in Google Scholar

36. Mann DMA. The neuropathology of Alzheimer’s disease: a review with pathogenetic, ætiological and therapeutic considerations. Mech Age Dev. 1985;31:213-55.10.1016/0047-6374(85)90092-2Search in Google Scholar

37. Hyman BT, van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225:1168–70.10.1126/science.6474172Search in Google Scholar

38. Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging. 1989;10:593-602.10.1016/0197-4580(89)90143-7Search in Google Scholar

39. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology. 1992;42:733-8.10.1212/WNL.42.4.733Search in Google Scholar

40. Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261-76.10.1002/neu.480230915Search in Google Scholar

41. Walton HS, Dodd PR. Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int. 2007;50:1052-66.10.1016/j.neuint.2006.10.007Search in Google Scholar

42. Kok E. Alzheimer’s Disease Neuropathology and Inflammation. A genetic and immunohistochemical study. Academic dissertation, University of Tampere, 2011.Search in Google Scholar

43. Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev. 2015;35(3):464-519.10.1002/med.21323Search in Google Scholar

44. Hallberg M, Nyberg F. Neuropeptide conversion to bioactive fragments - an important pathway in neuromodulation. Curr Protein Pept. 2003;4(1):31-44.10.2174/1389203033380313Search in Google Scholar

45. Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer’s Disease. Front Mol Neurosci. 2019;11:493.10.3389/fnmol.2018.00493Search in Google Scholar

46. Saito T, Takaki Y, Iwata N, Trojanowski J, Saido TC. Alzheimer’s disease, neuropeptides, neuropeptidase, and amyloid-beta peptide metabolism. Sci Aging Knowledge Environ. 2003;2003(3):PE1.10.1126/sageke.2003.3.pe1Search in Google Scholar

47. Van Dam D, Van Dijck A, Janssen L, De Deyn PP. Neuropeptides in Alzheimer’s disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res. 2013;10(5):449-68.10.2174/1567205011310050001Search in Google Scholar

48. Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. Curr Alzheimer Res. 2019;16(6):544-58.10.2174/1567205016666190503152555Search in Google Scholar

49. Fliers E, Swaab DF. Neuropeptide changes in aging and Alzheimer’s disease. Prog Brain Res. 1986;70:141-52.10.1016/S0079-6123(08)64302-2Search in Google Scholar

50. Hayashi M, Yamashita A, Shimizu K. Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res. 1997;749:283-9.10.1016/S0006-8993(96)01317-0Search in Google Scholar

51. Takagi H, Shiomi H, Ueda H, Amano H. Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (Kyotorphin) and its analogue. Eur J Pharmacol. 1979;55(1):109-11.10.1016/0014-2999(79)90154-7Search in Google Scholar

52. Nishimura K, Kaya K, Hazato T, Ueda H, Satoh M, Takagi H. Kyotorphin like substance in human cerebrospinal fluid of patients with persistent pain. Masui 1991;40(11):1686-90.Search in Google Scholar

53. Shiomi H, Ueda H, Takagi H. Isolation and identification of an analgesic opioid dipeptide kyotorphin (Tyr-Arg) from bovine brain. Neuropharmacol 1981;20(7):633-8.10.1016/0028-3908(81)90109-XSearch in Google Scholar

54. Shiomi H, Kuraishi Y, Ueda H, Harada Y, Amano J, Takagi H. Mechanism of kyotorhin-induced release of met-enkephalin from guinea pig striatum and spinal cord. Brain Res. 1981;221:161-9.10.1016/0006-8993(81)91070-2Search in Google Scholar

55. Ueda H, Yoshihara Y, Fukushima N, Shiomi H, Nakamura A, Takagi H. Kyotorphin (tyrosinearginine) synthetase in rat brain synaptosomes. J Biol Chem. 1987;262(17):8165-73.10.1016/S0021-9258(18)47544-8Search in Google Scholar

56. Yoshihara Y, Ueda H, Fujii N, Shide A, Yajima H, Satoh M. Purification of a novel type of calcium-activated neutral protease from rat brain. Possible involvement in production of the neuropeptide kyotorphin from calpastatin fragments. J Biol Chem. 1990;265(10):5809-15.10.1016/S0021-9258(19)39435-9Search in Google Scholar

57. Ueda H, Miyamae T, Fukushima N, Watanabe S, Misu Y. Evidence for a metabostatic opioid kappa-receptor inhibiting pertussis toxin-sensitive metabotropic glutamate receptor-currents in Xenopus oocytes. FEBS Lett. 1995;375(3):201-5.10.1016/0014-5793(95)01204-RSearch in Google Scholar

58. Ueda H, Miyamae T, Hayashi C, Watanabe S, Fukushima N, Sasaki Y, Iwamura T, Misu Y. Protein kinase C involvement in homologous desensitization of delta-opioid receptor coupled to Gi1-phospholipase C activation in Xenopus oocytes. J Neurosci. 1995;15(11):7485-99.10.1523/JNEUROSCI.15-11-07485.1995Search in Google Scholar

59. Ueda H, Yoshihara Y, Takagi H. A putative met-enkephalin releaser, kyotorphin enhances intracellular Ca2+ in the synaptosomes. Biochem Biophys Res Commun. 1986;137(2):897-902.10.1016/0006-291X(86)91164-2Search in Google Scholar

60. Ueda H, Shiomi H., Takagi H. Regional distribution of a novel analgesic dipeptide kyotorphin (Tyr-Arg) in the rat brain and spinal cord. Brain Res. 1980;198(2):460-4.10.1016/0006-8993(80)90761-1Search in Google Scholar

61. Ribeiro MM, Pinto AR, Domingues MM, Serrano I, Heras M, Bardaji ER, Tavares I, Castanho MA. Chemical conjugation of the neuropeptide kyotorphin and ibuprofen enhances brain targeting and analgesia. Mol Pharm. 2011;8(5):1929-40.10.1021/mp200301621830793Search in Google Scholar

62. Ribeiro MM, Pinto A, Pinto M, Heras M, Martins I, Correia A, Bardaji E, Tavares I, Castanho M. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin. Br J Pharmacol. 2011;163(5):964-73.10.1111/j.1476-5381.2011.01290.xSearch in Google Scholar

63. Fujita T, Kishida T, Okada N, Ganapathy V, Leibach FH, Yamamoto A. Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: implication of high affinity type H+/peptide transporter PEPT2 mediated transport system. Neurosci Lett. 1999;271(2):117-20.10.1016/S0304-3940(99)00540-6Search in Google Scholar

64. Fujita T, Kishida T, Wada M, Okada N, Yamamoto A, Leibach FH, Ganapathy V. Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2. Brain Res. 2004;997(1):52-61.10.1016/j.brainres.2003.10.049Search in Google Scholar

65. Dieck ST, Heuer H, Ehrchen J, Otto C, Bauer K. The peptide transporter PEPT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative h-Ala-Lys-Nq-AMCA in astrocytes, glia. 1999;25:10-20.Search in Google Scholar

66. Berger U.V., M.A. Hediger, Distribution of peptide transporter PEPT2 mRNA in the rat nervous system, Anat Embryol. 1999;199:439-49.Search in Google Scholar

67. Nazarenko IV, Zvrushchenko MSh, Volkov AV, Kamenskii AA, Zaganshin RKh. Functional-morphologic evaluation of the effect of the regulatory peptide kyotorphin on the status of the CNS in the post-resuscitation period. Patol Fiziol Eksp Ter. 1999; (2):31-3.Search in Google Scholar

68. Dzambazova E, Bocheva A, Landzhov B, Bozhilova-Pastirova A. Effects of kyotorphin on NADPH-d reactive neurons in rats after cold stress. Compt Rend Acad Bulg Sci. 2008;61(5):661-6.Search in Google Scholar

69. Dzambazova E, Bocheva A, Landzhov B, Bozhilova-Pastirova A. Stress-induced nitric oxide activity in rat’s paraventricular nucleus was affected by kyotorphin and its synthetic analogue. Coll Symp Ser. 2009;11:28-30.10.1135/css200911028Search in Google Scholar

70. Dzambazova E, Landzhov B, Bocheva A, Bozhilova-Pastirova A. Effects of kyotorphin on NADPH-d reactive neurons in rat’s cerebral cortex after acute immobilization stress. Compt Rend Bulg Acad Sci. 2011; 64(12):1779-84.Search in Google Scholar

71. Santalova IM, Mavlyutov TA, Moshkov DA. Morphofunctional changes in Mauthner neurons during exposure to the neuropeptide kyotorphin. Neu rosci Behav Physiol. 2004;34:327-32.10.1023/B:NEAB.0000018741.79726.70Search in Google Scholar

72. Dzhambazova E, Bocheva A. The unique brain dipeptide kyotorphin - from discovery to nowadays. J Biomed Clin Res. 2010;3(1):3-11.Search in Google Scholar

73. Gorenkova NA, Nazarenko IV, Samorukova IV, Avrushchenko M, Volkov AV. Therapy of postresuscitation behavioral disorders with mexidol and kyotorphin. Anesteziol Reanimatol. 2002;6:63-66.Search in Google Scholar

74. Godlevsky LS, Shandra AA, Mikhaleva II, Vastyanov RS, Mazarati AM. Seizure-protecting effects of kyotorphin and related peptides in an animal model of epilepsy. Brain Res Bull. 1995;37(3):223-6.10.1016/0361-9230(94)00274-5Search in Google Scholar

75. Shandra AA. Role of neuropeptides in the mechanisms of chronic epileptization of the brain. Neurophysiology. 1999;31:75-8.10.1007/BF02515038Search in Google Scholar

76. Emelianova T, Usenko A, Ushakov V, Kononova L, Michaleva I. Effects of kyotorphin and neokyotorphin on thermoregulation in rats at different temperatures. In: Kolaeva S, Popova N, Solomonov N, Wahg L, Eds. Ecologo-physiological characteristics of natural hypometabolic states. Puschino: ONTI SGBK, 1992. p. 132–7.Search in Google Scholar

77. Ignat’ev DA, Vorob’ev VV, Ziganshin RKh. Effects of a number of short peptides isolated from the brain of the hibernating ground squirrel on the EEG and behavior in rats. Neurosci Behav Physiol. 1998;28(2):158-66.10.1007/BF024619629604218Search in Google Scholar

78. Dzambazova-Maximova E., A. Bocheva, Hr. Nocheva. Is kyotorphin an antiopioid peptide. Bulg Chem Commun. 2006;38(1):36-41.Search in Google Scholar

79. Dzhambazova E. Possible anti-stressor effects of kyotorphin and its optical isomer. Pharmacologia, 6(8), 413-420, 2015.10.5567/pharmacologia.2015.413.420Search in Google Scholar

80. Santos SM, Garcia-Nimo L, Sá Santos S, Tavares I, Cocho JA, Castanho MA. Neuropeptide Kyotorphin (Tyrosyl-Arginine) has decreased levels in the cerebro-spinal fluid of Alzheimer’s Disease patients: Potential diagnostic and pharmacological implications. Front Aging Neurosci. 2013;5:68. doi: 10.3389/fnagi.2013.00068.10.3389/fnagi.2013.00068381256424198785Search in Google Scholar

81. Sulkava R, Erkinjuntti T, Laatikainen T. CSF beta-endorphin and beta-lipotropin in Alzheimer’s disease and multiinfarct dementia. Neurology. 1985;35(7):1057-8.10.1212/WNL.35.7.1057Search in Google Scholar

82. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010:6:131-44.10.1038/nrneurol.2010.4Search in Google Scholar

83. Sabuncu MR, Desikan RS, Sepulcre J, Yeo BT, Liu H, Schmansky NJ, Reuter M, Weiner MW, Buckner RL, Sperling RA, Fischl B. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol. 2011;68:1040-8.10.1001/archneurol.2011.167Search in Google Scholar

84. Borsook D. Neurological diseases and pain. Brain. 2012;135:320-44.10.1093/brain/awr271Search in Google Scholar

85. Farrell MJ, Katz B, Helme RD. The impact of dementia on the pain experience. Pain. 1996;67(1):7-15.10.1016/0304-3959(96)03041-2Search in Google Scholar

86. Benedetti F, Vighetti S, Ricco C, Lagna E, Bergamasco B, Pinessi L, Rainero I. Pain threshold and tolerance in Alzheimer’s disease. Pain. 1999;80(1-2):377-82.10.1016/S0304-3959(98)00228-0Search in Google Scholar

87. Santos S, Castanho M. The use of visual analog scales to compare pain between patients with Alzheimer’s Disease and patients without any known neurodegenerative disease and their caregivers. Am J Alzheimers Dis Other Demen. 2014;29(4):320-5.10.1177/153331751351704624370623Search in Google Scholar

88. Ayoub M, Scheidegger D. Peptide drugs, overcoming the challenges, a growing business. Chem Today. 2006;24:46-8.Search in Google Scholar

89. Marx V. Watching peptide drugs grow up. Chem Eng News. 2005;83(11):17-24.10.1021/cen-v083n011.p017Search in Google Scholar

90. Sá Santos S, Santos SM, Pinto AR, Ramu VG, Heras M, Bardaji E, Tavares I, Castanho MA. Amidated and ibuprofen-conjugated kyotorphins promote neuronal rescue and memory recovery in cerebral hypoperfusion dementia model. Front Aging Neurosci. 2016;8:1. doi: 10.3389/fnagi.2016.0000110.3389/fnagi.2016.00001472679926858637Search in Google Scholar

91. Conceição K, Magalhães PR, Campos SR, Domingues MM, Ramu VG, Michalek M, Bertani P, Baptista AM, Heras M, Bardaji ER, Bechinger B, Ferreira ML, Castanho MA. The anti-inflammatory action of analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism. Amino Acids. 2016;48(1):307-18.10.1007/s00726-015-2088-926347373Search in Google Scholar

92. Dehghan-Shasaltaneh M, Naghdi N, Choopani S, Alizadeh L, Bolouri B, Masoudi-Nejad A, Riazi GH. Determination of the Best Concentration of Streptozotocin to Create a Diabetic Brain Using Histological Techniques. J Mol Neurosci. 2016;59(1):24-35.10.1007/s12031-015-0702-7Search in Google Scholar

93. Angelova H., D. Pechlivanova, E. Dzhambazova, B. Landzhov. Effects of kyotorphin on the early behavioral and histological changes induced by an experimental model of Alzheimer’s disease in rats. Compt Rend Acad Bulg Sci. 2018;71(3):424-30.Search in Google Scholar

94. Angelova H, Pechlivanova D, Krumova E, Miteva-Staleva J, Kostadinova N, Dzhambazova E, Landzhov B. Moderate protective effect of kyotorphin against the late consequences of intracerebroventricular streptozotocin model of Alzheimer’s disease. Amino Acids. 2019;51(9):1-13.10.1007/s00726-019-02784-5Search in Google Scholar

95. Arima T, Kitamura Y, Nishiya T, Takagi H, Nomura Y. Kyotorphin (L-tyrosyl-L-arginine) as a possible substrate for inducible nitric oxide synthase in rat glial cells. Neurosci Lett. 1996;212(1):1-4.10.1016/0304-3940(96)12758-0Search in Google Scholar

96. Arima T, Kitamura Y, Nishiya T, Taniguchi T, Takagi H, Nomura Y. Effects of kyotorphin (L-tyrosyl-L-arginine) ON[3H]NG-nitro-L-arginine binding to neuronal nitric oxide synthase in rat brain. Neurochem Int. 1997;30(6):605-11.10.1016/S0197-0186(96)00098-8Search in Google Scholar

97. de la Torre JC, Stefano GB. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev. 2000;34(3):119-36.10.1016/S0165-0173(00)00043-6Search in Google Scholar

eISSN:
1313-9053
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Ophthalmology, Public Health, Pharmacy, Clinical Pharmacy