1. bookVolume 12 (2022): Issue 4 (October 2022)
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Semantic Hashing for Fast Solar Magnetogram Retrieval

Published Online: 29 Oct 2022
Volume & Issue: Volume 12 (2022) - Issue 4 (October 2022)
Page range: 299 - 306
Received: 12 May 2022
Accepted: 19 Oct 2022
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

[1] R. Salakhutdinov and G. Hinton, Semantic hashing, International Journal of Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.10.1016/j.ijar.2008.11.006 Search in Google Scholar

[2] The SunPy Community et al., The sunpy project: Open source development and status of the version 1.0 core package, The Astrophysical Journal, vol. 890, pp. 1–12, 2020. [Online]. Available: https://iopscience.iop.org/article/10.3847/1538-4357/ab4f7a10.3847/1538-4357/ab4f7a Search in Google Scholar

[3] Stuart Mumford, Nabil Freij et al., Sunpy: A python package for solar physics, Journal of Open Source Software, vol. 5, no. 46, p. 1832, 2020. [Online]. Available: https://doi.org/10.21105/joss.01832 Search in Google Scholar

[4] C. Brunner, A. K˝o, and S. Fodor, An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection, Journal of Artificial Intelligence and Soft Computing Research, vol. 12, no. 2, pp. 149–163, 2022.10.2478/jaiscr-2022-0010 Search in Google Scholar

[5] R. Grycuk, T. Galkowski, R. Scherer, and L. Rutkowski, A novel method for solar image retrieval based on the parzen kernel estimate of the function derivative and convolutional autoencoder, in 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022, pp. 1–7.10.1109/IJCNN55064.2022.9892753 Search in Google Scholar

[6] P. Najgebauer, R. Scherer, and L. Rutkowski, Fully convolutional network for removing dct artefacts from images, in 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.10.1109/IJCNN48605.2020.9207249 Search in Google Scholar

[7] M. Buckland and F. Gey, The relationship between recall and precision, Journal of the American society for information science, vol. 45, no. 1, p. 12, 1994.10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L Search in Google Scholar

[8] K. M. Ting, Precision and recall, in Encyclopedia of machine learning. Springer, 2011, pp. 781–781.10.1007/978-0-387-30164-8_652 Search in Google Scholar

[9] J. M. Banda and R. A. Angryk, Regional content-based image retrieval for solar images: Traditional versus modern methods, Astronomy and computing, vol. 13, pp. 108–116, 2015.10.1016/j.ascom.2015.09.005 Search in Google Scholar

[10] J. M. Banda and R. A. Angryk, Large-scale region-based multimedia retrieval for solar images, in International Conference on Artificial Intelligence and Soft Computing. Springer, 2014, pp. 649–661.10.1007/978-3-319-07173-2_55 Search in Google Scholar

[11] R. Grycuk and R. Scherer, Grid-based concise hash for solar images, in International Conference on Computational Science. Springer, 2021, pp. 242–254.10.1007/978-3-030-77967-2_20 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo