1. bookVolume 12 (2022): Issue 4 (October 2022)
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Multi-Population-Based Algorithm with an Exchange of Training Plans Based on Population Evaluation

Published Online: 29 Oct 2022
Volume & Issue: Volume 12 (2022) - Issue 4 (October 2022)
Page range: 239 - 253
Received: 31 May 2022
Accepted: 14 Oct 2022
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

[1] Ł. Bartczuk, A. Przybył, K. Cpałka, A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, International Journal of Applied Mathematics and Computer Science (AMCS), 26(3), 603-621, 2016.10.1515/amcs-2016-0042 Search in Google Scholar

[2] J. Bilski, B. Kowalczyk, A. Marchlewska, J.M. Żurada, Local Levenberg-Marquardt Algorithm for Learning Feedforwad Neural Networks, Journal of Artificial Intelligence and Soft Computing Research, 10(4), 299-316, 2020, https://doi.org/10.2478/jaiscr-2020-0020. Search in Google Scholar

[3] R. Chen, B. Yang, S. Li, S. Wang, Q. Cheng, An Effective Multi-population Grey Wolf Optimizer based on Reinforcement Learning for Flow Shop Scheduling Problem with Multi-machine Collaboration, Computers & Industrial Engineering, 162, 2021, https://doi.org/10.1016/j.cie.2021.107738. Search in Google Scholar

[4] P. Duda, M. Jaworski, A. Cader, L. Wang, On Training Deep Neural Networks Using a Streaming Approach, Journal of Artificial Intelligence and Soft Computing Research, 10(1), 15-26, 2020, https://doi.org/10.2478/jaiscr-2020-0002. Search in Google Scholar

[5] K. Cpałka, K. Łapa, L. Rutkowski, A multi-population-based algorithm with different ways of subpopulations cooperation, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Springer, 2022 (in print). Search in Google Scholar

[6] P. Dziwiński, Ł. Bartczuk, J. Paszkowski, A New Auto Adaptive Fuzzy Hybrid Particle Swarm Optimization and Genetic Algorithm, Journal of Artificial Intelligence and Soft Computing Research, 10(2), 95-111, 2020, https://doi.org/10.2478/jaiscr-2020-0007. Search in Google Scholar

[7] P. Dziwiński, P. Przybył, P. Trippner, J. Paszkowski, Y. Hayashi, Hardware Implementation of a Takagi-Sugeno Neuro-Fuzzy System Optimized by a Population Algorithm, Journal of Artificial Intelligence and Soft Computing Research, 11(3), 243-266, 2021, https://doi.org/10.2478/jaiscr-2021-0015. Search in Google Scholar

[8] L. Fu, H. Ouyang, C. Zhang, S. Li, A.W. Mohamed, A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems, Applied Soft Computing, 121, 2022, https://doi.org/10.1016/j.asoc.2022.108719. Search in Google Scholar

[9] F. Kılıç, Y. Kaya, S. Yildirim, A novel multi population based particle swarm optimization for feature selection, Knowledge-Based Systems, 219, 2021, https://doi.org/10.1016/j.knosys.2021.106894. Search in Google Scholar

[10] M. Korytkowski, R. Senkerik, M.M. Scherer, R.A. Angryk, M. Kordos, A. Siwocha, Efficient Image Retrieval by Fuzzy Rules from Boosting and Metaheuristic, Journal of Artificial Intelligence and Soft Computing Research, 10(1), 57-69, 2020, https://doi.org/10.2478/jaiscr-2020-0005. Search in Google Scholar

[11] K. Łapa, K. Cpałka, Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction, IEEE Trans. on Industrial Informatics, 14(3), 1078-1088, 2018.10.1109/TII.2017.2771953 Search in Google Scholar

[12] K. Łapa, K. Cpałka, Ł. Laskowski, A. Cader, Z. Zeng, Evolutionary Algorithm with a Configurable Search Mechanism, Journal of Artificial Intelligence and Soft Computing Research, 10(3), 151-171, 2020.10.2478/jaiscr-2020-0011 Search in Google Scholar

[13] K. Łapa, K. Cpałka, M. Zalasiński, Algorithm Based on Population with a Flexible Search Mechanism, IEEE Access, 7, 132253-132270, 2019.10.1109/ACCESS.2019.2941182 Search in Google Scholar

[14] G. Li, W. Wang, W. Zhang, Z. Wang, H. Tu, W. You, Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization, Swarm and Evolutionary Computation, 62, 2021, https://doi.org/10.1016/j.swevo.2021.100843. Search in Google Scholar

[15] F. Ming, W. Gong, L. Wang, C. Lu, A tri-population based co-evolutionary framework for constrained multi-objective optimization problems, Swarm and Evolutionary Computation, 70, 2022, https://doi.org/10.1016/j.swevo.2022.101055. Search in Google Scholar

[16] T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, A. Cader, Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network, Journal of Artificial Intelligence and Soft Computing Research, 11(2), 143-155, 2021, https://doi.org/10.2478/jaiscr-2021-0009. Search in Google Scholar

[17] L.R. Rodrigues, A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations, Computers & Electrical Engineering, 97, 2022, https://doi.org/10.1016/j.compeleceng.2021.107632. Search in Google Scholar

[18] A.K. Saha, Multi-population-based adaptive sine cosine algorithm with modified mutualism strategy for global optimization, Knowledge-Based Systems, 2022.10.1016/j.knosys.2022.109326 Search in Google Scholar

[19] A. Słowik, K. Cpałka, Guest Editorial: Hybrid Approaches to Nature-Inspired Population-Based Intelligent Optimization for Industrial Applications, IEEE Transactions on Industrial Informatics, 18(1), 542-545, 2022, DOI (identifier) 10.1109/TII.2021.3091137.10.1109/TII.2021.3091137 Search in Google Scholar

[20] A. Słowik, K. Cpałka, Hybrid Approaches to Nature-inspired Population-based Intelligent Optimization for Industrial Applications, IEEE Transactions on Industrial Informatics, 18(1), 546-558, 2022, DOI (identifier) 10.1109/TII.2021.3067719.10.1109/TII.2021.3067719 Search in Google Scholar

[21] A. Słowik, K. Cpałka, K. Łapa, Multi-Population Nature-Inspired Algorithm (MNIA) for the Designing of Interpretable Fuzzy Systems, IEEE Transactions on Fuzzy Systems, 28(6), 1125-1139, 2020, DOI (identifier) 10.1109/TFUZZ.2019.2959997.10.1109/TFUZZ.2019.2959997 Search in Google Scholar

[22] Y. Song, D. Wu, W. Deng, X.Z. Gao, T. Li, B. Zhang, Y. Li, MPPCEDE: Multi-population parallel co-evolutionary differential evolution for parameter optimization, Energy Conversion and Management, 228, 2021, https://doi.org/10.1016/j.enconman.2020.113661. Search in Google Scholar

[23] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL report, 2005. Search in Google Scholar

[24] Y. Sun, Y. Chen, Multi-population improved whale optimization algorithm for high dimensional optimization, Applied Soft Computing, 112, 2021, https://doi.org/10.1016/j.asoc.2021.107854. Search in Google Scholar

[25] J. Szczypta, A. Przybył, K. Cpałka, Some aspects of evolutionary designing optimal controllers, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 7895, Springer, 91-100, 2013.10.1007/978-3-642-38610-7_9 Search in Google Scholar

[26] R. Tanabe, A. Fukunaga, Evaluating the performance of SHADE on CEC 2013 benchmark problems. In 2013 IEEE Congress on evolutionary computation, pp. 1952-1959, IEEE, 2013. Search in Google Scholar

[27] V. Thanasis, B.S. Efthimia, K. Dimitris, Estimation of linear trend onset in time series, Simulation Modelling Practice and Theory, 19(5), 1384-1398, 2011, https://doi.org/10.1016/j.simpat.2011.02.006. Search in Google Scholar

[28] B. Yang, S. Wang, Q. Cheng, T. Jin, Scheduling of field service resources in cloud manufacturing based on multi-population competitive-cooperative GWO, Computers & Industrial Engineering, 154, 2021, https://doi.org/10.1016/j.cie.2021.107104. Search in Google Scholar

[29] M. Zalasiński, K. Cpałka, A new method of on-line signature verification using a flexible fuzzy one-class classifier, Academic Publishing House EXIT, 38-53, 2011. Search in Google Scholar

[30] M. Zalasiński, K. Cpałka, Novel algorithm for the on-line signature verification using selected discretization points groups, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 7894, Springer, 493-502, 2013.10.1007/978-3-642-38658-9_44 Search in Google Scholar

[31] M. Zalasiński, K. Cpałka, Y. Hayashi, New method for dynamic signature verification based on global features, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 8467, Springer, 251-265, 2014.10.1007/978-3-319-07176-3_21 Search in Google Scholar

[32] M. Zalasiński, K. Cpałka, Y. Hayashi, New fast algorithm for the dynamic signature verification using global features values, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 9120, Springer, 175-188, 2015.10.1007/978-3-319-19369-4_17 Search in Google Scholar

[33] M. Zalasiński, K. Cpałka, Ł. Laskowski, D.C. Wunsch, K. Przybyszewski, An Algorithm for the Evolutionary-Fuzzy Generation of on-Line Signature Hybrid Descriptors, Journal of Artificial Intelligence and Soft Computing Research, 10(3), 173-187, 2020, https://doi.org/10.2478/jaiscr-2020-0012. Search in Google Scholar

[34] M. Zalasiński, K. Łapa, K. Cpałka, New algorithm for evolutionary selection of the dynamic signature global features, Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 7895, Springer, 113-121, 2013.10.1007/978-3-642-38610-7_11 Search in Google Scholar

[35] M. Zalasiński, K. Łapa, K. Cpałka, K. Przybyszewski, G.G. Yen, On-Line Signature Partitioning Using a Population Based Algorithm, Journal of Artificial Intelligence and Soft Computing Research, 10(1), 5-13, 2020, https://doi.org/10.2478/jaiscr-2020-0001. Search in Google Scholar

[36] X. Zhang, S. Wen, D. Wang, Multi-population biogeography-based optimization algorithm and its application to image segmentation, Applied Soft Computing, 124, 2022, https://doi.org/10.1016/j.asoc.2022.109005. Search in Google Scholar

[37] F. Zhao, G. Zhou, L. Wang, T. Xu, N. Zhu, Jonrinaldi, A two-stage cooperative scatter search algorithm with multi-population hierarchical learning mechanism, Expert Systems with Applications, 203, 2022, https://doi.org/10.1016/j.eswa.2022.117444. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo