1. bookVolume 10 (2020): Issue 1 (January 2020)
Journal Details
First Published
30 Dec 2014
Publication timeframe
4 times per year
Open Access

A Strong and Efficient Baseline for Vehicle Re-Identification Using Deep Triplet Embedding

Published Online: 11 Dec 2019
Volume & Issue: Volume 10 (2020) - Issue 1 (January 2020)
Page range: 27 - 45
Received: 30 Sep 2019
Accepted: 11 Nov 2019
Journal Details
First Published
30 Dec 2014
Publication timeframe
4 times per year

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.Search in Google Scholar

[2] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L. Duan. Group Sensitive Triplet Embedding for Vehicle Reidentification. IEEE Transactions on Multimedia, 2018.10.1109/TMM.2018.2796240Open DOISearch in Google Scholar

[3] S. Bak, M. S. Biagio, R. Kumar, V. Murino, and F. Bremond. Exploiting Feature Correlations by Brownian Statistics for People Detection and Recognition. IEEE Transactions on Systems, Man, and Cybernetics, 2017.10.1109/TSMC.2016.2531658Search in Google Scholar

[4] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore, E. Säckinger, and R. Shah. Signature Verification Using a “Siamese” Time Delay Neural Network. International Journal of Pattern Recognition and Artificial Intelligence 1993.10.1142/S0218001493000339Open DOISearch in Google Scholar

[5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similiarty metric discriminatively, with application to face verification. In CVPR, 2005.Search in Google Scholar

[6] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, Person Re-Identication by Symmetry-Driven Accumulation of Local Features. In CVPR, 2010.10.1109/CVPR.2010.5539926Search in Google Scholar

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Networks. In NIPS, 2014.Search in Google Scholar

[8] H. Z. Gu and S. Y. Lee. Car model recognition by utilizing symmetric property to overcome severe pose variation. Machine Vision and Applications, 2013.Search in Google Scholar

[9] H. Guo, C. Zhao, Z. Liu, J. Wang, and H. Lu. Learning Coarse-to-Fine Structured Feature Embedding for Vehicle Re-Identification. In AAAI, 2018.10.1609/aaai.v32i1.12237Search in Google Scholar

[10] K. He, R. B. Girshick, and P. Dollár. Rethinking imagenet pre-training. CoRR’18Search in Google Scholar

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016.10.1109/CVPR.2016.90Search in Google Scholar

[12] A. Hermans, L. Beyer, and B. Leibe. In Defense of the Triplet Loss for Person Re-Identification. In CoRR, 2017.Search in Google Scholar

[13] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 1997.10.1162/neco.1997.9.8.17359377276Search in Google Scholar

[14] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In ICLR Workshops, 2015.10.1007/978-3-319-24261-3_7Search in Google Scholar

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. In CVPR, 2017.Search in Google Scholar

[16] Q. Hu, H. Wang, T. Li, and C. Shen. Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition. IEEE Transactions on Intelligent Transportation Systems, 2017.10.1109/TITS.2017.2679114Search in Google Scholar

[17] V. Jain, Z. Sasindran, A. Rajagopal, S. Biswas, H. S. Bharadwaj, and K. R. Ramakrishnan. Deep automatic license plate recognition system. ICVGIP, 2016.10.1145/3009977.3010052Search in Google Scholar

[18] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.10.1109/CVPR.2009.5206848Search in Google Scholar

[19] A. Kanaci, X. Zhu, and S. Gong. Vehicle Re-Identification by Fine-Grained Cross-Level Deep Learning. In BMVC, 2017.Search in Google Scholar

[20] A. Kanaci, X. Zhu, and S. Gong. Vehicle reidentification in context. In Pattern Recognition -40th German Conference, GCPR 2018, Stuttgart, Germany, September 10-12, 2018, Proceedings, 2018.Search in Google Scholar

[21] P. Khorramshahi, A. Kumar, N. Peri, S. S. Rambhatla, J.-C. Chen, and R. Chellappa. A dual-path model with adaptive attention for vehicle reidentification. In ICCV’19Search in Google Scholar

[22] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.Search in Google Scholar

[23] R. Kumar, G. Charpiat, and M. Thonnat. Multiple Object Tracking by Efficient Graph Partitioning. In ACCV’14Search in Google Scholar

[24] R. Kumar, E. Weill, F. Aghdasi, and P. Sriram. Vehicle re-identification: an efficient baseline using triplet embedding. In IJCNN’19Search in Google Scholar

[25] L. Liao, R. Hu, J. Xiao, Q. Wang, J. Xiao, and J. Chen. Exploiting effects of parts in fine-grained categorization of vehicles. In ICIP, 2015.10.1109/ICIP.2015.7350898Search in Google Scholar

[26] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person reidentification by Local Maximal Occurrence representation and metric learning. In CVPR, 2015.10.1109/CVPR.2015.7298832Search in Google Scholar

[27] Y. L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly optimizing 3D model fitting and fine-grained classification. In ECCV, 2014.10.1007/978-3-319-10593-2_31Search in Google Scholar

[28] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles. In CVPR, 2016.10.1109/CVPR.2016.238Search in Google Scholar

[29] X. Liu, W. Liu, H. Ma, and H. Fu. Large-scale vehicle re-identification in urban surveillance videos. ICME, 2016.10.1109/ICME.2016.7553002Search in Google Scholar

[30] X. Liu, H. Ma, H. Fu, and M. Zhou. Vehicle Retrieval and Trajectory Inference in Urban Traffic Surveillance Scene. In ICDSC, 2014.10.1145/2659021.2659055Search in Google Scholar

[31] Y. Lou, Y. Bai, J. Liu, S. Wang, and L.-Y. Duan. A large-scale dataset for vehicle re-identification in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.10.1109/CVPR.2019.00335Search in Google Scholar

[32] P. Luo, C. C. Loy, X. Tang, L. Yang, P. Luo, C. C. Loy, and X. Tang. A Large-Scale Car Dataset for Fine-Grained Categorization and Verification. In CVPR, 2015.Search in Google Scholar

[33] B. Ma, Y. Su, F. Jurie, B. Ma, Y. Su, and F. Jurie. Local Descriptors Encoded by Fisher Vectors for Person Re-identification. In ECCV Workshops, 2012.10.1007/978-3-642-33863-2_41Search in Google Scholar

[34] B. P. Ma, Y. Su, and F. Jurie. BiCov: a novel image representation for person re-identification and face verification. In BMVC, 2012.10.5244/C.26.57Open DOISearch in Google Scholar

[35] R. Manmatha, C. Y. Wu, A. J. Smola, and P. Krahenbuhl. Sampling Matters in Deep Embedding Learning. In CVPR, 2017.Search in Google Scholar

[36] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Working hard to know your neighbor’s margins: Local descriptor learning loss. In NIPS, 2017.Search in Google Scholar

[37] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent Models of Visual Attention. In NIPS, 2014.Search in Google Scholar

[38] M. Naphade, M.-C. Chang, A. Sharma, C. Anastasiu, David, V. Jagarlamudi, P. Chakraborty, T. Huang, S. Wang, M. Y. Liu, R. Chellappa, J.-N. Hwang, and S. Lyu. The 2018 NVIDIA AI City Challenge. CVPR Workshops, 2018.10.1109/CVPRW.2018.00015Search in Google Scholar

[39] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric Learning with Adaptive Density Discrimination. In ICLR, 2016.Search in Google Scholar

[40] E. Ristani and C. Tomasi. Features for Multi-Target Multi-Camera Tracking and Re-Identification. In CVPR, 2018.10.1109/CVPR.2018.00632Open DOISearch in Google Scholar

[41] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In CVPR, 2015.10.1109/CVPR.2015.7298682Search in Google Scholar

[42] L. Shen, Z. Lin, and Q. Huang. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks. In ECCV, 2016.10.1007/978-3-319-46478-7_29Search in Google Scholar

[43] Y. Shen, T. Xiao, H. Li, S. Yi, and X. Wang. Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-Temporal Path Proposals. ICCV, 2017.10.1109/ICCV.2017.210Open DOISearch in Google Scholar

[44] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR’14Search in Google Scholar

[45] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR, 2015.Search in Google Scholar

[46] J. Sochor, A. Herout, and J. Havel. BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition. In CVPR, 2016.10.1109/CVPR.2016.328Open DOISearch in Google Scholar

[47] J. Spanhel, J. Sochor, R. Juranek, A. Herout, L. Marsik, and P. Zemcik. Holistic recognition of low quality license plates by CNN using track annotated data. AVSS, 2017.10.1109/AVSS.2017.8078501Open DOISearch in Google Scholar

[48] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Multiple people tracking by lifted multicut and person re-identification. In CVPR, 2017.10.1109/CVPR.2017.394Search in Google Scholar

[49] Z. Tang, M. Naphade, S. Birchfield, J. Tremblay, W. Hodge, R. Kumar, S. Wang, and X. Yang. Pamtri: Pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In ICCV’19Search in Google Scholar

[50] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D. Anastasiu, and J.-N. Hwang. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and reidentification. In CVPR’19Search in Google Scholar

[51] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In European Conference on Computer Vision, pages 589–600, 2006.10.1007/11744047_45Search in Google Scholar

[52] Y. Wang, L. Xie, S. Qiao, Y. Zhang, W. Zhang, and A. L. Yuille. A Deep Learning-Based Approach to Progressive Vehicle Re-identification for Urban Surveillance. In ECCV, 2016.Search in Google Scholar

[53] Z. Wang, L. Tang, X. Liu, Z. Yao, S. Yi, J. Shao, J. Yan, S. Wang, H. Li, and X. Wang. Orientation Invariant Feature Embedding and Spatial Temporal Regularization for Vehicle Re-identification. In ICCV, 2017.10.1109/ICCV.2017.49Search in Google Scholar

[54] K. Q. Weinberger and L. K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. The Journal of Machine Learning Research, 10:207–244, 2009.Search in Google Scholar

[55] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and S. Lyu. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking.Search in Google Scholar

[56] N. Wojke and A. Bewley. Deep Cosine Metric Learning for Person Re-identification. In WACV, 2018.10.1109/WACV.2018.00087Open DOISearch in Google Scholar

[57] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification. In CVPR, 2016.10.1109/CVPR.2016.140Open DOISearch in Google Scholar

[58] K. Yan, Y. Tian, Y. Wang, W. Zeng, and T. Huang. Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles. In ICCV, 2017.10.1109/ICCV.2017.68Open DOISearch in Google Scholar

[59] D. Zapletal, A. Herout, and A. Herout. Vehicle Re-Identification for Automatic Video Traffic Surveil-lance. In CVPR Workshops, 2016.10.1109/CVPRW.2016.195Search in Google Scholar

[60] L. Zhang, T. Xiang, and S. Gong. Learning a Discriminative Null Space for Person Re-identification. In CVPR, 2016.10.1109/CVPR.2016.139Open DOISearch in Google Scholar

[61] Y. Zhou and L. Shao. Vehicle Re-Identification by Adversarial Bi-Directional LSTM Network. In WACV, 2018.10.1109/WACV.2018.00077Open DOISearch in Google Scholar

[62] Y. Zhou and L. Shao. Viewpoint-aware Attentive Multi-view Inference for Vehicle Re-identification. In CVPR, 2018.10.1109/CVPR.2018.00679Open DOISearch in Google Scholar

Recommended articles from Trend MD