[
Alexander, S. A., and Hutter, M. 2021. Reward-Punishment Symmetric Universal Intelligence. In CAGI.10.1007/978-3-030-93758-4_1
]Search in Google Scholar
[
Alexander, S. A., and Pedersen, A. P. 2022. Pseudo-visibility: A Game Mechanic Involving Willful Ignorance. In FLAIRS.10.32473/flairs.v35i.130652
]Search in Google Scholar
[
Alexander, S. A.; Castaneda, M.; Compher, K.; and Martinez, O. 2022. Extended Environments. https://github.com/semitrivial/ExtendedEnvironments.
]Search in Google Scholar
[
Alexander, S. A. 2022. Extended subdomains: a solution to a problem of Hernández-Orallo and Dowe. Preprint (accepted to CAGI-22).10.1007/978-3-031-19907-3_14
]Search in Google Scholar
[
Bell, J. H.; Linsefors, L.; Oesterheld, C.; and Skalse, J. 2021. Reinforcement Learning in Newcomblike Environments. In NeurIPS.
]Search in Google Scholar
[
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47:253–279.10.1613/jair.3912
]Search in Google Scholar
[
Beyret, B.; Hernández-Orallo, J.; Cheke, L.; Halina, M.; Shanahan, M.; and Crosby, M. 2019. The animal-AI environment: Training and testing animal-like artificial cognition. Preprint.
]Search in Google Scholar
[
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI gym. Preprint.
]Search in Google Scholar
[
Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008. Monte-Carlo Tree Search: A New Framework for Game AI. AIIDE 8:216–217.
]Search in Google Scholar
[
Chollet, F. 2019. On the measure of intelligence. Preprint.
]Search in Google Scholar
[
Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020. Leveraging procedural generation to benchmark reinforcement learning. In International conference on machine learning, 2048–2056. PMLR.
]Search in Google Scholar
[
Gavane, V. 2013. A measure of real-time intelligence. Journal of Artificial General Intelligence 4(1):31–48.10.2478/jagi-2013-0003
]Search in Google Scholar
[
Hendrycks, D., and Dietterich, T. 2019. Benchmarking neural network robustness to common corruptions and perturbations. In International Conference on Learning Representations.
]Search in Google Scholar
[
Hernández-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18):1508–1539.10.1016/j.artint.2010.09.006
]Search in Google Scholar
[
Hibbard, B. 2008. Adversarial sequence prediction. In CAGI.
]Search in Google Scholar
[
Hubinger, E.; van Merwijk, C.; Mikulik, V.; Skalse, J.; and Garrabrant, S. 2019. Risks from learned optimization in advanced machine learning systems. Preprint.
]Search in Google Scholar
[
Hutter, M. 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer.
]Search in Google Scholar
[
Legg, S., and Hutter, M. 2007. Universal intelligence: A definition of machine intelligence. Minds and machines 17(4):391–444.10.1007/s11023-007-9079-x
]Search in Google Scholar
[
Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure. In Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence. Springer. 236–249.10.1007/978-3-642-44958-1_18
]Search in Google Scholar
[
Leike, J., and Hutter, M. 2015. Bad universal priors and notions of optimality. In Conference on Learning Theory, 1244–1259. PMLR.
]Search in Google Scholar
[
Li, M., and Vitányi, P. 2008. An introduction to Kolmogorov complexity and its applications. Springer.10.1007/978-0-387-49820-1
]Search in Google Scholar
[
Nichol, A.; Pfau, V.; Hesse, C.; Klimov, O.; and Schulman, J. 2018. Gotta Learn Fast: A New Benchmark for Generalization in RL. Preprint.
]Search in Google Scholar
[
Nozick, R. 1969. Newcomb’s problem and two principles of choice. In Rescher, N., ed., Essays in honor of Carl G. Hempel. Springer. 114–146.10.1007/978-94-017-1466-2_7
]Search in Google Scholar
[
Raffn, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; and Dormann, N. 2019. Stable Baselines3. https://github.com/DLR-RM/stable-baselines3.
]Search in Google Scholar
[
Sherstan, C.; White, A.; Machado, M. C.; and Pilarski, P. M. 2016. Introspective agents: Confidence measures for general value functions. In Conference on Artificial General Intelligence, 258–261. Springer.10.1007/978-3-319-41649-6_26
]Search in Google Scholar
[
Yampolskiy, R. V. 2017. Detecting qualia in natural and artificial agents. Preprint.
]Search in Google Scholar