Open Access

Influence of the Shape and Content of Steel and Aluminum Fibers from Industrial Lathe Wastes on the Physico-Mechanical and Rheological Behavior of Concrete


Cite

Arulrajah, A., Disfani, M. M., Haghighi, H., Mohammadinia, A., & Horpibulsuk, S. (2015). Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends. Construction and Building Materials, 84, 146-155. https://doi.org/10.1016/j.conbuildmat.2015.03.048. Search in Google Scholar

Asokan, P., Osmani, M., & Price, A. D. (2009). Assessing the recycling potential of glass fiber reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821-829. https://doi.org/10.1016/j.jclepro.2008.12.004. Search in Google Scholar

Atis, C. D., Karahan, O., Ari, K., Celik Sola, Ö., & Bilim, C. (2009). Relation between strength properties (flexural and compressive) and abrasion resistance of fiber (steel and polypropylene)-reinforced fly ash concrete. Journal of Materials in Civil Engineering, 21(8), 402-408. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:8(402). Search in Google Scholar

Belagraa, L., Kessal, O., Boulaouad, A., Mecheri, M. C., Noui, A., & Abderrazak, B. (2020). Experimental Investigation on the Properties of a Recycled Aggregate Concrete Based on Waste of the Industrial Mineral Additions. KnE Engineering, 124-133. https://doi.org/10.18502/keg.v5i4.6803. Search in Google Scholar

Belkadi, A. A., Kessal, O., Chiker, T., Achour, Y., Rouabhi, A., Messaoudi, O., & Khouadjia, M. L. K. (2022). Full Factorial Design of Mechanical and Physical Properties of Eco-mortars Containing Waste Marble Powder. Arabian Journal for Science and Engineering, 1-14. https://doi.org/10.1007/s13369-022-06971-7. Search in Google Scholar

Bensalem, S., khouadjia, M. L. K., Abdou, K., Belkadi, A. A., & Kessal, O. (2022). Experimental Evaluation of Workability Compressive Strength and Freeze-Thaw Durability of Concrete Containing Expanded Clay Aggregates. Aceh International Journal of Science and Technology, 11(2). https://doi.org/10.13170//aijst.11.2.25028. Search in Google Scholar

Bhat, J. A. (2021). Effect of strength of parent concrete on the mechanical properties of recycled aggregate concrete. Materials Today: Proceedings, 42, 1462-1469. https://doi.org/10.1016/j.matpr.2021.01.31. Search in Google Scholar

Bogue, R. H. (1955). The chemistry of Portland cement . LWW, 79 (4), 322. Search in Google Scholar

Caggiano, A., Folino, P., Lima, C., Martinelli, E., & Pepe, M. (2017). On the mechanical response of hybrid fiber reinforced concrete with recycled and industrial steel fibers. Construction and Building Materials, 147, 286-295. https://doi.org/10.1016/j.conbuildmat.2017.04.160. Search in Google Scholar

Chiker, T., Belkadi, A. A., & Aggoun, S. (2021). Physico-chemical and microstructural fire-induced alterations into metakaolin-based vegetable and polypropylene fibred mortars. Construction and Building Materials, 276, 122225. https://doi.org/10.1016/j.conbuildmat.2020.122225. Search in Google Scholar

Delsol, S. (2012). Évaluation du coefficient d’orientation dans les bétons renforcés de fibres métalliques. Ecole Polytechnique, Montreal (Canada). Search in Google Scholar

Di Prisco, M., Plizzari, G., & Vandewalle, L. (2009). Fibre reinforced concrete: new design perspectives. Materials and structures, 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4. Search in Google Scholar

Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.16. Search in Google Scholar

Dreux, G. and Festa, J. (1998). Nouveau guide du béton et de ses constitutants. Eyrolles. Search in Google Scholar

El-Sayed, T. A. (2019). Flexural behavior of RC beams containing recycled industrial wastes as steel fibers. Construction and Building Materials, 212, 27-38. https://doi.org/10.1016/j.conbuildmat.2019.03.311. Search in Google Scholar

Foti, D. (2013). Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396-404. https://doi.org/10.1016/j.compstruct.2012.09.01. Search in Google Scholar

Khouadjia, M. L. K., Mezghiche, B., & Drissi, M. (2015). Experimental evaluation of workability and compressive strength of concrete with several local sand and mineral additions. Construction and Building Materials, 98, 194-203. https://doi.org/10.1016/j.conbuildmat.2015.08.081. Search in Google Scholar

Khouadjia, M. L. K., Belebchouche, C., & BensacI-Chibane, L. (2019). Characterization of recovery filler from hot-mix asphalt plants and its effect on the workability and compressive strength of concrete. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 43(3). https://doi.org/10.25987/VSTU.2019.3.43.005. Search in Google Scholar

Li, P., Li, S., Zhu, W., & Lu, Y. (2022). Experimental research on the mechanical properties of steel fiber recycled aggregate concrete subjected to true triaxial compression. Construction and Building Materials, 339, 127579. https://doi.org/10.1016/j.conbuildmat.2022.12757. Search in Google Scholar

Moghadam, A. S., Omidinasab, F., & Abdalikia, M. (2021). The effect of initial strength of concrete wastes on the fresh and hardened properties of recycled concrete reinforced with recycled steel fibers. Construction and Building Materials, 300, 124284. https://doi.org/10.1016/j.conbuildmat.2021.124284. Search in Google Scholar

Najim, K. B., Saeb, A., & Al-Azzawi, Z. (2018). Structural behaviour and fracture energy of recycled steel fibre self-compacting reinforced concrete beams. Journal of Building Engineering, 17, 174-182. https://doi.org/10.1016/j.jobe.2018.02.014. Search in Google Scholar

Nikbin, I. M., Dezhampanah, S., Charkhtab, S., Mehdipour, S., Shahvareh, I., Ebrahimi, M., ... & Pourghorban, H. (2022). Life cycle assessment and mechanical properties of high strength steel fiber reinforced concrete containing waste PET bottle. Construction and Building Materials, 337, 127553. https://doi.org/10.1016/j.conbuildmat.2022.127553. Search in Google Scholar

Paktiawal, A., & Alam, M. (2021). An experimental study on effect of aluminum composite panel waste on performance of cement concrete. Ain Shams Engineering Journal, 12(1), 83-98. https://doi.org/10.1016/j.asej.2020.07.024. Search in Google Scholar

Reddy, M. S., & Neeraja, D. (2016). Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resource-Efficient Technologies, 2(4), 225-232. https://doi.org/10.1016/j.reffit.2016.10.01. Search in Google Scholar

Sabapathy, Y. K., Sabarish, S., Nithish, C. N. A., Ramasamy, S. M., & Krishna, G. (2021). Experimental study on strength properties of aluminium fibre reinforced concrete. Journal of King Saud University-Engineering Sciences, 33(1), 23-29. https://doi.org/10.1016/j.jksues.2019.12.004. Search in Google Scholar

Serelis, E., & Vaitkevicius, V. (2022). Utilization of glass shards from municipal solid waste in aluminium-based ultra-lightweight concrete. Construction and Building Materials, 350, 128396. https://doi.org/10.1016/j.conbuildmat.2022.128396. Search in Google Scholar

Suleman, M., Ahmad, N., Khan, S. U., & Ahmad, T. (2021). Investigating flexural performance of waste tires steel fibers-reinforced cement-treated mixtures for sustainable composite pavements. Construction and Building Materials, 275, 122099. https://doi.org/10.1016/j.conbuildmat.2020.122099. Search in Google Scholar

Tao, Q., Niu, B., Guan, Y., Kong, J., Zhang, C., & Kong, Z. (2022). Experimental and theoretical study on flexural behavior of high strength concrete encased steel beams with steel fibers. In Structures, 41,1359-1368. https://doi.org/10.1016/j.istruc.2022.05.07 Search in Google Scholar

Zaid, O., Ahmad, J., Siddique, M. S., Aslam, F., Alabduljabbar, H., & Khedher, K. M. (2021). A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Scientific Reports, 11(1), 1-14. https://doi.org/10.1038/s41598-021-92228-6. Search in Google Scholar

Zaid, O., Mukhtar, F. M., Rebeca, M., El Sherbiny, M. G., & Mohamed, A. M. (2022). Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Studies in Construction Materials, 16, e00939. https://doi.org/10.1016/j.cscm.2022.e0093. Search in Google Scholar

Zega, C. J., & Di Maio, A. A. (2011). Recycled concretes made with waste ready-mix concrete as coarse aggregate. Journal of Materials in Civil Engineering, 23(3), 281-286. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000165. Search in Google Scholar

Zhang, L., Zhao, J., Fan, C., & Wang, Z. (2020). Effect of surface shape and content of steel fiber on mechanical properties of concrete. Advances in Civil Engineering, 2020, 1-11. https://doi.org/10.1155/2020/8834507. Search in Google Scholar

eISSN:
2284-7197
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy