Cite

Abdel-Shafy, H. I., & Mansour, M. S. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian journal of petroleum, 27(4), 1275-1290.10.1016/j.ejpe.2018.07.003Search in Google Scholar

Ashish, D. K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of cleaner production, 211, 716-729.10.1016/j.jclepro.2018.11.245Search in Google Scholar

Bagherzadeh R., Pakravan H.R., Sadeghi A.H., Latifi M. and Merati A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC). Journal of Engineered Fabrics & Fibers 7, no. 4: 13 – 21.Search in Google Scholar

BS EN 12350-2:2019, Testing fresh concrete. Slump test. British Standard Institution, UK.Search in Google Scholar

BS EN 12390-3:2019, Testing hardened concrete. Compressive strength of test specimens. British Standard Institution, UK.Search in Google Scholar

BS EN 12390-5:2019, Testing hardened concrete. Flexural strength of test specimens. British Standard Institution, UK.Search in Google Scholar

Chao-Lung, H., Tuan, B. L., and Tsun, C. C. (2011). Effect of rice husk ash on the strength and durability characteristics of concrete. Construction and Building Materials. 25: 3768 – 3772. doi:10.1016/j.conbuildmat.2011.04.009.10.1016/j.conbuildmat.2011.04.009Search in Google Scholar

Gettu, R., Patel, A., Rathi, V., Prakasan, S., Basavaraj, A. S., Palaniappan, S., & Maity, S. (2019). Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context. Materials and Structures, 52(1), 10.10.1617/s11527-019-1321-5Search in Google Scholar

Hussain, Z., Noor, N. M. and Caronge, M. A. (2019). Workability and Compressive Strength of Seawater-Mixed Concrete Containing Rice Husk Ash as Supplementary Cementitious Material. International Journal of Integrated Engineering, 11(9), 192-200.Search in Google Scholar

Ibrahm H.A. and Abbas B.J. (2017). Mechanical Behavior of Recycled Self-Compacting Concrete Reinforced with Polypropylene Fibres. Journal of Architectural Engineering Technology 6, issue no. 2: 1 – 7. Doi: 10.4172/2168-9717.1000207.10.4172/2168-9717.1000207Search in Google Scholar

Jhatial, A. A., Goh, W. I., Mohamad, N., Rind, T. A. & Sandhu, A. R. (2020). Development of Thermal Insulating Lightweight Foamed Concrete Reinforced with Polypropylene Fibres. Arabian Journal for Science and Engineering, 45, 4067–4076. https://doi.org/10.1007/s13369-020-04382-0.10.1007/s13369-020-04382-0Search in Google Scholar

Jhatial, A. A., Sohu, S., Memon, M. J., Bhatti, N. K. & Memon, D. (2019a). Eggshell powder as partial cement replacement and its effect on the workability and compressive strength of concrete. International Journal of Advanced and Applied Sciences, 6(9), 71-75.10.21833/ijaas.2019.09.011Search in Google Scholar

Jhatial, A. A., Goh, W. I., Mo, K. H., Sohu, S., & Bhatti, I. A. (2019b). Green and sustainable concrete–the potential utilization of rice husk ash and egg shells. Civil Engineering Journal, 5(1), 74-81.10.28991/cej-2019-03091226Search in Google Scholar

Jhatial, A. A., Sohu, S., Bhatti, N. K., Lakhiar, M. T., & Oad, R. (2018a). Effect of steel fibres on the compressive and flexural strength of concrete. International Journal of Advanced and Applied Sciences, 5(10), 16-21.Search in Google Scholar

Jhatial A.A., Goh W.I., Mohamad N., Alengaram U.J. and Mo K.H. (2018b). Effect of Polypropylene Fibres on the Thermal Conductivity of Lightweight Foamed Concrete. MATEC Web of Conferences 150: 1 – 6. Doi: 10.1051/matecconf/201815003008.10.1051/matecconf/201815003008Search in Google Scholar

Jhatial, A. A., Goh, W. I., Mohamad, N., Hong, L. W., Lakhiar, M. T., Samad, A. A. A., & Abdullah, R. (2018c). The Mechanical Properties of Foamed Concrete with Polypropylene Fibres. International Journal of Engineering & Technology, 7(3.7), 411-413.Search in Google Scholar

Juenger, M. C., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122, 257-273.10.1016/j.cemconres.2019.05.008Search in Google Scholar

Kachwala, A., Pammani, A., Raval, A. (2015). Effect of rice husk ash as a partial replacement of ordinary Portland cement in concrete. International Research Journal of Engineering and Technology, vol. 2, issue 5, (2015): 175 – 177.Search in Google Scholar

Kishore, R., Bhikshma, V. and Prakash P. J. (2011). Study on strength characteristics of high strength Rice Husk Ash concrete. Procedia Engineering. 14: 2666 – 2672. doi:10.1016/j.proeng.2011.07.335.10.1016/j.proeng.2011.07.335Search in Google Scholar

Koushkbaghi, M., Kazemi, M. J., Mosavi, H., & Mohseni, E. (2019). Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Construction and Building Materials, 202, 266-275.10.1016/j.conbuildmat.2018.12.224Search in Google Scholar

Krishna, N. K., Sandeep, S., Mini, K. M. (2016). Study on concrete with partial replacement of cement by rice husk ash. IOP Conf. Series: Materials Science and Engineering, 149: 1 – 11. doi:10.1088/1757-899X/149/1/012109.10.1088/1757-899X/149/1/012109Search in Google Scholar

Martirena, F., & Monzó, J. (2018). Vegetable ashes as supplementary cementitious materials. Cement and Concrete Research, 114, 57-64.10.1016/j.cemconres.2017.08.015Search in Google Scholar

Memon, I. A., Jhatial, A. A., Sohu, S., Lakhiar, M. T., & Khaskheli, Z. H. (2018). Influence of Fibre Length on the Behaviour of Polypropylene Fibre Reinforced Cement Concrete. Civil Engineering Journal, 4(9), 2124-2131.10.28991/cej-03091144Search in Google Scholar

Mohod M.V. (2015). Performance of Polypropylene Fibre Reinforced Concrete. IOSR Journal of Mechanical and Civil Engineering 12, issue no. 1: 28 – 36.Search in Google Scholar

Nair M.M., Shetty N., Alva P.P. and Shetty S.D. (2018). Effect of sawdust impregnation on long coir fibres reinforced with epoxy matrix. International Journal of Advanced and Applied Sciences 5, no. 3: 67 – 74. Doi: 10.21833/ijaas.2018.03.010.10.21833/ijaas.2018.03.010Search in Google Scholar

Rahim, M. A., Ibrahim, N. M., Idris, Z., Ghazaly, Z. M., Shahidan, S., Rahim, N. L., Sofri, L. A. and Isa, N. F. (2014). Properties of Concrete with Different Percentage of the Rice Husk Ash (RHA) as Partial Cement Replacement. Materials Science Forum, 803: 288 – 293.Search in Google Scholar

Ramadhansyah, P. J., Masri, K. A., Mangi, S. A., Yusak, M. M., Mashros, N., Warid, M. M., Satar, M. K. I. M. & Haziman, W. M. (2020). Strength and Porosity of Porous Concrete Pavement Containing Nano Black Rice Husk Ash. In IOP Conference Series: Materials Science and Engineering, vol. 712, no. 1, p. 012037. IOP Publishing.Search in Google Scholar

Sandhu, A. R., Lakhiar, M. T., Jhatial, A. A., Karira, H., & Jamali, Q. B. (2019). Effect of River Indus Sand and Recycled Concrete Aggregates as Fine and Coarse Replacement on Properties of Concrete. Engineering, Technology & Applied Science Research, 9(1), 3831-3834.10.48084/etasr.2558Search in Google Scholar

Singh, V.K. (2014). Effect of Polypropylene Fibre on Properties of Concrete. International Journal of Engineering Sciences & Research Technology 3, issue no. 12: 312 – 317.Search in Google Scholar

Suhendro, B. (2014). Toward green concrete for better sustainable environment. Procedia Engineering. 95: 305–320.Search in Google Scholar

Sohu, S., Ullah, K., Jhatial, A. A., Jaffar, M., & Lakhiar, M. T. (2018). Factors adversely affecting quality in highway projects of Pakistan. International Journal of Advanced and Applied Sciences, 5(10), 62-66.10.21833/ijaas.2018.10.009Search in Google Scholar

eISSN:
2284-7197
ISSN:
2247-3769
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy