Open Access

Comparison of outlier detection approaches in a Smart Cities sensor data context


Cite

Aix, M. L., Schmitz, S., & Bicout, D. J. (2023). Calibration methodology of low-cost sensors for high-quality monitoring of fine particulate matter. Science of the Total Environment, 889(February). https://doi.org/10.1016/j.scitotenv.2023.164063 AixM. L. SchmitzS. BicoutD. J. 2023 Calibration methodology of low-cost sensors for high-quality monitoring of fine particulate matter Science of the Total Environment 889 February https://doi.org/10.1016/j.scitotenv.2023.164063 Search in Google Scholar

Al Samara, M., Bennis, I., Abouaissa, A., & Lorenz, P. (2022). A Survey of Outlier Detection Techniques in IoT: Review and Classification. Journal of Sensor and Actuator Networks, 11(1). https://doi.org/10.3390/jsan11010004 Al SamaraM. BennisI. AbouaissaA. LorenzP. 2022 A Survey of Outlier Detection Techniques in IoT: Review and Classification Journal of Sensor and Actuator Networks 11 1 https://doi.org/10.3390/jsan11010004 Search in Google Scholar

Alvear-Puertas, V. E., Burbano-Prado, Y. A., Rosero-Montalvo, P. D., Tözün, P., Marcillo, F., & Hernandez, W. (2022). Smart and Portable Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador. Sensors, 22(18), 1–17. https://doi.org/10.3390/s22187015 Alvear-PuertasV. E. Burbano-PradoY. A. Rosero-MontalvoP. D. TözünP. MarcilloF. HernandezW. 2022 Smart and Portable Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador Sensors 22 18 1 17 https://doi.org/10.3390/s22187015 Search in Google Scholar

Amini, M. H., Arasteh, H., & Siano, P. (2019). Sustainable Smart Cities Through the Lens of Complex Interdependent Infrastructures: Panorama and State-of-the-art (pp. 45–68). https://doi.org/10.1007/978-3-319-98923-5_3 AminiM. H. ArastehH. SianoP. 2019 Sustainable Smart Cities Through the Lens of Complex Interdependent Infrastructures: Panorama and State-of-the-art 45 68 https://doi.org/10.1007/978-3-319-98923-5_3 Search in Google Scholar

Aslan, M. E., & Onut, S. (2022). Detection of Outliers and Extreme Events of Ground Level Particulate Matter Using DBSCAN Algorithm with Local Parameters. Water, Air, and Soil Pollution, 233(6). https://doi.org/10.1007/s11270-022-05679-6 AslanM. E. OnutS. 2022 Detection of Outliers and Extreme Events of Ground Level Particulate Matter Using DBSCAN Algorithm with Local Parameters Water, Air, and Soil Pollution 233 6 https://doi.org/10.1007/s11270-022-05679-6 Search in Google Scholar

Ayadi, A., Ghorbel, O., Obeid, A. M., & Abid, M. (2017). Outlier detection approaches for wireless sensor networks: A survey. Computer Networks, 129(2), 319–333. https://doi.org/10.1016/j.comnet.2017.10.007 AyadiA. GhorbelO. ObeidA. M. AbidM. 2017 Outlier detection approaches for wireless sensor networks: A survey Computer Networks 129 2 319 333 https://doi.org/10.1016/j.comnet.2017.10.007 Search in Google Scholar

Barkjohn, K. K., Gantt, B., & Clements, A. L. (2021). Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor. Atmospheric Measurement Techniques, 14(6), 4617–4637. https://doi.org/10.5194/amt-14-4617-2021 BarkjohnK. K. GanttB. ClementsA. L. 2021 Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor Atmospheric Measurement Techniques 14 6 4617 4637 https://doi.org/10.5194/amt-14-4617-2021 Search in Google Scholar

Becnel, T., Sayahi, T., Kelly, K., & Gaillardon, P. E. (2019). A recursive approach to partially blind calibration of a pollution sensor network. 2019 IEEE International Conference on Embedded Software and Systems, ICESS 2019. https://doi.org/10.1109/ICESS.2019.8782523 BecnelT. SayahiT. KellyK. GaillardonP. E. 2019 A recursive approach to partially blind calibration of a pollution sensor network 2019 IEEE International Conference on Embedded Software and Systems, ICESS 2019 https://doi.org/10.1109/ICESS.2019.8782523 Search in Google Scholar

Bi, J., Wildani, A., Chang, H. H., & Liu, Y. (2020). Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale. Environmental Science and Technology, 54(4), 2152–2162. https://doi.org/10.1021/acs.est.9b06046 BiJ. WildaniA. ChangH. H. LiuY. 2020 Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale Environmental Science and Technology 54 4 2152 2162 https://doi.org/10.1021/acs.est.9b06046 Search in Google Scholar

Blázquez-García, A., Conde, A., Mori, U. & Lozano, J. A. (2021). A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys, 54(3). https://doi.org/10.1145/3444690 Blázquez-GarcíaA. CondeA. MoriU. LozanoJ. A. 2021 A Review on Outlier/Anomaly Detection in Time Series Data ACM Computing Surveys 54 3 https://doi.org/10.1145/3444690 Search in Google Scholar

Braei, M., & Wagner, S. (2020). Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art. ArXiv, abs/2004.00433 BraeiM. WagnerS. 2020 Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art ArXiv, abs/2004.00433 Search in Google Scholar

Chen, L. J., Ho, Y. H., Hsieh, H. H., Huang, S. T., Lee, H. C., & Mahajan, S. (2018). ADF: An Anomaly Detection Framework for Large-Scale PM2.5 Sensing Systems. IEEE Internet of Things Journal, 5(2), 559–570. https://doi.org/10.1109/JIOT.2017.2766085 ChenL. J. HoY. H. HsiehH. H. HuangS. T. LeeH. C. MahajanS. 2018 ADF: An Anomaly Detection Framework for Large-Scale PM2.5 Sensing Systems IEEE Internet of Things Journal 5 2 559 570 https://doi.org/10.1109/JIOT.2017.2766085 Search in Google Scholar

Cieplak, T., Rymarczyk, T., & Tomaszewski, R. (2019). A concept of the air quality monitoring system in the city of Lublin with machine learning methods to detect data outliers. MATEC Web of Conferences, 252, 03009. https://doi.org/10.1051/matecconf/201925203009 CieplakT. RymarczykT. TomaszewskiR. 2019 A concept of the air quality monitoring system in the city of Lublin with machine learning methods to detect data outliers MATEC Web of Conferences 252 03009 https://doi.org/10.1051/matecconf/201925203009 Search in Google Scholar

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend decomposition Procedure Based on Loess. Journal of Official Statistics, 6(1), 3–73. ClevelandR. B. ClevelandW. S. McRaeJ. E. TerpenningI. 1990 STL: A Seasonal-Trend decomposition Procedure Based on Loess Journal of Official Statistics 6 1 3 73 Search in Google Scholar

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1979.10481038 ClevelandW. S. 1979 Robust locally weighted regression and smoothing scatterplots Journal of the American Statistical Association 74 368 829 836 https://doi.org/10.1080/01621459.1979.10481038 Search in Google Scholar

Csaji, B. C., Kemeny, Z., Pedone, G., Kuti, A., & Vancza, J. (2017). Wireless Multi-Sensor Networks for Smart Cities: A Prototype System with Statistical Data Analysis. IEEE Sensors Journal, 17(23), 7667–7676. https://doi.org/10.1109/JSEN.2017.2736785 CsajiB. C. KemenyZ. PedoneG. KutiA. VanczaJ. 2017 Wireless Multi-Sensor Networks for Smart Cities: A Prototype System with Statistical Data Analysis IEEE Sensors Journal 17 23 7667 7676 https://doi.org/10.1109/JSEN.2017.2736785 Search in Google Scholar

Dancho, M. & Vaughan, D. (2022). Anomalize: Tidy Anomaly Detection. R package version 0.2.2. https://cran.r-project.org/package=anomalize DanchoM. VaughanD. 2022 Anomalize: Tidy Anomaly Detection. R package version 0.2.2 https://cran.r-project.org/package=anomalize Search in Google Scholar

Ding, Z., Mei, G., Cuomo, S., Li, Y., & Xu, N. (2020). Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms. International Journal of Parallel Programming, 48(3), 534–548. https://doi.org/10.1007/s10766-018-0595-5 DingZ. MeiG. CuomoS. LiY. XuN. 2020 Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms International Journal of Parallel Programming 48 3 534 548 https://doi.org/10.1007/s10766-018-0595-5 Search in Google Scholar

Elbaz, K., Hoteit, I., Shaban, W. M., & Shen, S. L. (2023). Spatiotemporal air quality forecasting and health risk assessment over smart city of NEOM. Chemosphere, 313(December 2022), 137636. https://doi.org/10.1016/j.chemosphere.2022.137636 ElbazK. HoteitI. ShabanW. M. ShenS. L. 2023 Spatiotemporal air quality forecasting and health risk assessment over smart city of NEOM Chemosphere 313 December 2022 137636 https://doi.org/10.1016/j.chemosphere.2022.137636 Search in Google Scholar

Elmenshawy, D., & Helmy, W. (2018). Detection Techniques of Data Anomalies in Iot: A Literature Survey. International Journal of Civil Engineering and Technology (IJCIET), 9(12), 794–807. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=121. ElmenshawyD. HelmyW. 2018 Detection Techniques of Data Anomalies in Iot: A Literature Survey International Journal of Civil Engineering and Technology (IJCIET) 9 12 794 807 http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=121. Search in Google Scholar

Esnaola-Gonzalez, I., Bermúdez, J., Fernández, I., Fernández, S., & Arnaiz, A. (2017). Towards a semantic outlier detection framework in wireless sensor networks. ACM International Conference Proceeding Series, 2017-September, 152–159. https://doi.org/10.1145/3132218.3132226 Esnaola-GonzalezI. BermúdezJ. FernándezI. FernándezS. ArnaizA. 2017 Towards a semantic outlier detection framework in wireless sensor networks ACM International Conference Proceeding Series 2017-September 152 159 https://doi.org/10.1145/3132218.3132226 Search in Google Scholar

Fan, Z., Feng, H., Jiang, J., Zhao, C., Jiang, N., Wang, W., & Zeng, F. (2020). Monte Carlo optimization for sliding window size in Dixon quality control of environmental monitoring time series data. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051876 FanZ. FengH. JiangJ. ZhaoC. JiangN. WangW. ZengF. 2020 Monte Carlo optimization for sliding window size in Dixon quality control of environmental monitoring time series data Applied Sciences (Switzerland) 10 5 https://doi.org/10.3390/app10051876 Search in Google Scholar

Feenstra, B., Collier-Oxandale, A., Papapostolou, V., Cocker, D., & Polidori, A. (2020). The AirSensor open-source R-package and DataViewer web application for interpreting community data collected by low-cost sensor networks. Environmental Modelling and Software, 134(August), 104832. https://doi.org/10.1016/j.envsoft.2020.104832 FeenstraB. Collier-OxandaleA. PapapostolouV. CockerD. PolidoriA. 2020 The AirSensor open-source R-package and DataViewer web application for interpreting community data collected by low-cost sensor networks Environmental Modelling and Software 134 August 104832 https://doi.org/10.1016/j.envsoft.2020.104832 Search in Google Scholar

Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33(29), 4877–4900. https://doi.org/10.1016/S1352-2310(99)00290-3 FengerJ. 1999 Urban air quality Atmospheric Environment 33 29 4877 4900 https://doi.org/10.1016/S1352-2310(99)00290-3 Search in Google Scholar

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., & Butterfield, A. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. https://doi.org/10.1016/j.envpol.2016.12.039 KellyK. E. WhitakerJ. PettyA. WidmerC. DybwadA. SleethD. MartinR. ButterfieldA. 2017 Ambient and laboratory evaluation of a low-cost particulate matter sensor Environmental Pollution 221 491 500 https://doi.org/10.1016/j.envpol.2016.12.039 Search in Google Scholar

Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of iot sensor data processing, fusion, and analysis techniques. Sensors (Switzerland), 20(21), 1–23. https://doi.org/10.3390/s20216076 KrishnamurthiR. KumarA. GopinathanD. NayyarA. QureshiB. 2020 An overview of iot sensor data processing, fusion, and analysis techniques Sensors (Switzerland) 20 21 1 23 https://doi.org/10.3390/s20216076 Search in Google Scholar

Liang, C. J., & Yu, P. R. (2021). Assessment and improvement of two low-cost particulate matter sensor systems by using spatial interpolation data from air quality monitoring stations. Atmosphere, 12(3). https://doi.org/10.3390/atmos12030300 LiangC. J. YuP. R. 2021 Assessment and improvement of two low-cost particulate matter sensor systems by using spatial interpolation data from air quality monitoring stations Atmosphere 12 3 https://doi.org/10.3390/atmos12030300 Search in Google Scholar

Liu, H., Shah, S., & Jiang, W. (2004). On-line outlier detection and data cleaning. Computers and Chemical Engineering, 28(9), 1635–1647. https://doi.org/10.1016/j.compchemeng.2004.01.009 LiuH. ShahS. JiangW. 2004 On-line outlier detection and data cleaning Computers and Chemical Engineering 28 9 1635 1647 https://doi.org/10.1016/j.compchemeng.2004.01.009 Search in Google Scholar

Liu, W., Jiang, H., Che, D., Chen, L., & Jiang, Q. (2020). A real-time temperature anomaly detection method for iot data. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, IoTBDS, 112–118. https://doi.org/10.5220/0009410001120118 LiuW. JiangH. CheD. ChenL. JiangQ. 2020 A real-time temperature anomaly detection method for iot data IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, IoTBDS 112 118 https://doi.org/10.5220/0009410001120118 Search in Google Scholar

Loo, B. P. Y., & Tang, W. S. M. (2019). “Mapping” Smart Cities. Journal of Urban Technology, 26(2), 129–146. https://doi.org/10.1080/10630732.2019.1576467 LooB. P. Y. TangW. S. M. 2019 “Mapping” Smart Cities Journal of Urban Technology 26 2 129 146 https://doi.org/10.1080/10630732.2019.1576467 Search in Google Scholar

Lovén, L., Peltonen, E., Pandya, A., Leppanen, T., Gilman, E., Pirttikangas, S., & Riekki, J. (2019). Towards EDISON: an edge-native approach to distributed interpolation of environmental data. Proceedings -International Conference on Computer Communications and Networks, ICCCN, 2019-July(May). https://doi.org/10.1109/ICCCN.2019.8847121 LovénL. PeltonenE. PandyaA. LeppanenT. GilmanE. PirttikangasS. RiekkiJ. 2019 Towards EDISON: an edge-native approach to distributed interpolation of environmental data Proceedings -International Conference on Computer Communications and Networks, ICCCN 2019-July (May). https://doi.org/10.1109/ICCCN.2019.8847121 Search in Google Scholar

Ma, L., Gu, X., & Wang, B. (2017). Correction of outliers in temperature time series based on sliding window prediction in meteorological sensor network. Information (Switzerland), 8(2). https://doi.org/10.3390/info8020060 MaL. GuX. WangB. 2017 Correction of outliers in temperature time series based on sliding window prediction in meteorological sensor network Information (Switzerland) 8 2 https://doi.org/10.3390/info8020060 Search in Google Scholar

Merello, P., García-Diego, F.-J., & Zarzo, M. (2014). Diagnosis of abnormal patterns in multivariate microclimate monitoring: A case study of an open-air archaeological site in Pompeii (Italy). Science of The Total Environment, 488489(1), 14–25. https://doi.org/10.1016/j.scitotenv.2014.04.068 MerelloP. García-DiegoF.-J. ZarzoM. 2014 Diagnosis of abnormal patterns in multivariate microclimate monitoring: A case study of an open-air archaeological site in Pompeii (Italy) Science of The Total Environment 488–489 1 14 25 https://doi.org/10.1016/j.scitotenv.2014.04.068 Search in Google Scholar

Nilson, B., Jackson, P. L., Schiller, C. L., & Parsons, M. T. (2022). Development and evaluation of correction models for a low-cost fine particulate matter monitor. Atmospheric Measurement Techniques, 15(11), 3315–3328. https://doi.org/10.5194/amt-15-3315-2022 NilsonB. JacksonP. L. SchillerC. L. ParsonsM. T. 2022 Development and evaluation of correction models for a low-cost fine particulate matter monitor Atmospheric Measurement Techniques 15 11 3315 3328 https://doi.org/10.5194/amt-15-3315-2022 Search in Google Scholar

Ogasawara, E., Martinez, L. C., De Oliveira, D., Zimbrão, G., Pappa, G. L., & Mattoso, M. (2010). Adaptive Normalization: A novel data normalization approach for non-stationary time series. In Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN.2010.5596746 OgasawaraE. MartinezL. C. De OliveiraD. ZimbrãoG. PappaG. L. MattosoM. 2010 Adaptive Normalization: A novel data normalization approach for non-stationary time series In Proceedings of the International Joint Conference on Neural Networks https://doi.org/10.1109/IJCNN.2010.5596746 Search in Google Scholar

Pastorio, A. F., Spanhol, F. A., Martins, L. D., & De Camargo, E. T. (2022). A Machine Learning-Based Approach to Calibrate Low-Cost Particulate Matter Sensors. Brazilian Symposium on Computing System Engineering, SBESC, 2022-November. https://doi.org/10.1109/SBESC56799.2022.9964983 PastorioA. F. SpanholF. A. MartinsL. D. De CamargoE. T. 2022 A Machine Learning-Based Approach to Calibrate Low-Cost Particulate Matter Sensors Brazilian Symposium on Computing System Engineering, SBESC 2022-November https://doi.org/10.1109/SBESC56799.2022.9964983 Search in Google Scholar

Pereira, F. C., Gonçalves, A. M., & Costa, M. (2023). Short-term forecast improvement of maximum temperature by state-space model approach: the study case of the TO CHAIR project. Stochastic Environmental Research and Risk Assessment, 37(1), 219–231. https://doi.org/10.1007/s00477-022-02290-3 PereiraF. C. GonçalvesA. M. CostaM. 2023 Short-term forecast improvement of maximum temperature by state-space model approach: the study case of the TO CHAIR project Stochastic Environmental Research and Risk Assessment 37 1 219 231 https://doi.org/10.1007/s00477-022-02290-3 Search in Google Scholar

Pinder, R. W., Klopp, J. M., Kleiman, G., Hagler, G. S. W., Awe, Y., & Terry, S. (2019). Opportunities and challenges for filling the air quality data gap in low- and middle-income countries. Atmospheric Environment, 215(June). https://doi.org/10.1016/j.atmosenv.2019.06.032 PinderR. W. KloppJ. M. KleimanG. HaglerG. S. W. AweY. TerryS. 2019 Opportunities and challenges for filling the air quality data gap in low- and middle-income countries Atmospheric Environment 215 June https://doi.org/10.1016/j.atmosenv.2019.06.032 Search in Google Scholar

PurpleAir. (2022). Download Data with the Sensor Data Download Tool. https://community.purpleair.com/t/download-data-with-the-sensor-data-download-tool/316 PurpleAir 2022 Download Data with the Sensor Data Download Tool https://community.purpleair.com/t/download-data-with-the-sensor-data-download-tool/316 Search in Google Scholar

Rosner, B. (1983). Percentage points for a generalized esd many-outlier procedure. Technometrics, 25(2), 165–172. https://doi.org/10.1080/00401706.1983.10487848 RosnerB. 1983 Percentage points for a generalized esd many-outlier procedure Technometrics 25 2 165 172 https://doi.org/10.1080/00401706.1983.10487848 Search in Google Scholar

Samara, M. Al, Bennis, I., Abouaissa, A., & Lorenz, P. (2022). A Survey of Outlier Detection Techniques in IoT: Review and Classification. Journal of Sensor and Actuator Networks, 11(1), 4. https://doi.org/10.3390/jsan11010004 SamaraM. Al BennisI. AbouaissaA. LorenzP. 2022 A Survey of Outlier Detection Techniques in IoT: Review and Classification Journal of Sensor and Actuator Networks 11 1 4 https://doi.org/10.3390/jsan11010004 Search in Google Scholar

Sayeed, M. S., Abdulrahim, H., Abdul Razak, S. F., Bukar, U. A., & Yogarayan, S. (2023). IoT Raspberry Pi Based Smart Parking System with Weighted K-Nearest Neighbours Approach. Civil Engineering Journal, 9(8), 1991–2011. https://doi.org/10.28991/CEJ-2023-09-08-012 SayeedM. S. AbdulrahimH. Abdul RazakS. F. BukarU. A. YogarayanS. 2023 IoT Raspberry Pi Based Smart Parking System with Weighted K-Nearest Neighbours Approach Civil Engineering Journal 9 8 1991 2011 https://doi.org/10.28991/CEJ-2023-09-08-012 Search in Google Scholar

Schilt, U., Barahona, B., Buck, R., Meyer, P., Kappani, P., Möckli, Y., Meyer, M., & Schuetz, P. (2023). Low-Cost Sensor Node for Air Quality Monitoring: Field Tests and Validation of Particulate Matter Measurements. Sensors, 23(2), 1–29. https://doi.org/10.3390/s23020794 SchiltU. BarahonaB. BuckR. MeyerP. KappaniP. MöckliY. MeyerM. SchuetzP. 2023 Low-Cost Sensor Node for Air Quality Monitoring: Field Tests and Validation of Particulate Matter Measurements Sensors 23 2 1 29 https://doi.org/10.3390/s23020794 Search in Google Scholar

Sharma, B., Sharma, L., & Lal, C. (2019). Anomaly Detection Techniques using Deep Learning in IoT: A Survey. Proceedings of 2019 International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2019, 146–149. https://doi.org/10.1109/ICCIKE47802.2019.9004362 SharmaB. SharmaL. LalC. 2019 Anomaly Detection Techniques using Deep Learning in IoT: A Survey Proceedings of 2019 International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2019 146 149 https://doi.org/10.1109/ICCIKE47802.2019.9004362 Search in Google Scholar

Stavroulas, I., Grivas, G., Michalopoulos, P., Liakakou, E., Bougiatioti, A., Kalkavouras, P., Fameli, K. M., Hatzianastassiou, N., Mihalopoulos, N., & Gerasopoulos, E. (2020). Field evaluation of low-cost PM sensors (Purple Air PA-II) Under variable urban air quality conditions, in Greece. Atmosphere, 11(9). https://doi.org/10.3390/atmos11090926 StavroulasI. GrivasG. MichalopoulosP. LiakakouE. BougiatiotiA. KalkavourasP. FameliK. M. HatzianastassiouN. MihalopoulosN. GerasopoulosE. 2020 Field evaluation of low-cost PM sensors (Purple Air PA-II) Under variable urban air quality conditions, in Greece Atmosphere 11 9 https://doi.org/10.3390/atmos11090926 Search in Google Scholar

Tahmasseby, S. (2022). The Implementation of Smart Mobility for Smart Cities: A Case Study in Qatar. Civil Engineering Journal, 8(10), 2154–2171. https://doi.org/10.28991/CEJ-2022-08-10-09 TahmassebyS. 2022 The Implementation of Smart Mobility for Smart Cities: A Case Study in Qatar Civil Engineering Journal 8 10 2154 2171 https://doi.org/10.28991/CEJ-2022-08-10-09 Search in Google Scholar

Yigitcanlar, T., Li, R. Y. M., Inkinen, T., & Paz, A. (2022). Public Perceptions on Application Areas and Adoption Challenges of AI in Urban Services. Emerging Science Journal, 6(6), 1199–1236. https://doi.org/10.28991/ESJ-2022-06-06-01 YigitcanlarT. LiR. Y. M. InkinenT. PazA. 2022 Public Perceptions on Application Areas and Adoption Challenges of AI in Urban Services Emerging Science Journal 6 6 1199 1236 https://doi.org/10.28991/ESJ-2022-06-06-01 Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other