Open Access

Numerical Modeling of Sediment Transport and Bed Evolution in Nonuniform Open-Channel Flows


Cite

Aureli F., Maranzoni A., Mignosa P., Ziveri C. (2008) A weighted surface-depth gradient method for the numerical integration of the 2D shallow-water equations with topography, Adv. Water Resour., 31(7), 962–974. Search in Google Scholar

Bashforth F., Adams J. C. (1883) An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops, Cambridge University Press, Cambridge, UK, 18–19. Search in Google Scholar

Bechteler W., Schrimpf W. (1984) Improved numerical model for sedimentation, J. Hydraul. Eng., 110(3), 234–246. Search in Google Scholar

Bechteler W., Schrimpf W. (1988) Practical aspects for the application of the di usion-convection theory for sediment transport in turbulent flows, [In:] Developments in Water Science, Celia et al (eds.), Elsevier, 35, 351–356, doi:10.1016/S0167-5648(08)70360-5. Search in Google Scholar

Bennett J. P. (1974) Concepts of mathematical modeling of sediment yield, Water Resour. Res., 10(3), 485–492. Search in Google Scholar

Berger R. C. (1992) Free-surface Flow over Curved Surfaces, Ph.D. Thesis, University of Texas, Austin, TX, USA. Search in Google Scholar

Bickley W. G. (1941) Formulae for numerical di erentiation, Math. Gaz., 25(263), 19–27, doi:10.2307/3606475. Search in Google Scholar

Boussinesq J. (1877) Essai Sur la Théorie des Eaux Courantes [Essay on the Theory of Water Flow], Mémoires Présentés par Divers Savantsà l’Académie des Sciences, Paris, 23(1), 1–680 [in French]. Search in Google Scholar

Cantero-Chinchilla F. N., Castro-Orgaz O., Khan A. A. (2019) Vertically averaged and moment equations for flow and sediment transport, Adv. Water Resour., doi:10.1016/j.advwatres.2019.103387. Search in Google Scholar

Cao Z., Pender G., Wallis S., Carling P. (2004) Computational dam-break hydraulics over erodible sediment bed, J. Hydraul. Eng., 130(7), 689–703. Search in Google Scholar

Capart H., Young D. L. (1998) Formation of a jump by the dam-break wave over a granular bed, J. Fluid Mech., 372, 165–187. Search in Google Scholar

Cheng K. J. (1984) Bottom-boundary condition for non-equilibrium transport of sediment, J. Geophys. Res., 89(C5), 8209–8214. Search in Google Scholar

Cheng N. S. (1997) Simplified settling velocity formula for sediment particle, J. Hydraul. Eng., 123(2), 149–152. Search in Google Scholar

Daubert A., Lebreton J. C. (1967) Etude expérimentale sur modèle mathématique de quelques aspects des processus d’érosion des lits alluvionnaires, en régime permanent et nonpermanent [Experimental study on a mathematical model of some aspects of the erosion processes of alluvial beds, in steady and unsteady states], [In:] Proceedings of the 12th IAHR World Congress, Fort Collins, CO, USA, 11–14 Sept., 3, 26–37 [in French]. Search in Google Scholar

Delft Hydraulics Laboratory (1980) Storm Surge Barrier Oosterschelde, Computation of Siltation in Dredged Trenches: Mathematical Model, Report 1267-V/M 1570, Delft, The Netherlands. Search in Google Scholar

Elgamal M. H., Ste er P. M. (2001) Stability analysis of dunes using 1D depth-averaged flow models, [In:] Proceedings of the 2nd IAHR Symposium on Rivers, Coastal and Estuarine Morphodynamics, Obihiro, Japan, 10–14 Sept., 197–206. Search in Google Scholar

El Kadi Abderrezzak K., Paquier A. (2009) One-dimensional numerical modeling of sediment transport and bed deformation in open channels, Water Resour. Res., 45, W05404, doi:10.1029/2008WR007134. Search in Google Scholar

Erduran K. S., Ilic S., Kutija V. (2005) Hybrid finite-volume finite-di erence scheme for the solution of Boussinesq equations, Int. J. Numer. Meth. Fluids, 49, 1213–1232. Search in Google Scholar

Exner F. M. (1925)Über die Wechselwirkung Zwischen Wasser und Geschiebe in Flüssen [On the Interaction between Water and Debris in Rivers], Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse, 134(2a), 165–203 [in German]. Search in Google Scholar

Ferziger J. H., Peric M. (2002) Computational Methods for Fluid Dynamics, 3rd rev. ed., Springer-Verlag Berlin Heidelberg: New York, NY, USA. Search in Google Scholar

Fischer B. H., List E. J., Koh R. C., Imberger J., Brooks N. H. (1979) Mixing in Inland and Coastal Waters, Academic Press: New York, NY, USA. Search in Google Scholar

Fraccarollo L., Capart H. (2002) Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183–228. Search in Google Scholar

Franzini F., Soares-Frazão S. (2018) Coupled finite-volume scheme with adapted Augmented Roe scheme for simulating morphological evolution in arbitrary cross-sections, J. Hydroinformatics, 20, 1111–1130. Search in Google Scholar

Ghamry H. K. (1999) Two-Dimensional Vertically Averaged and Moment Equations for Shallow Free-Surface Flows, Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada. Search in Google Scholar

Guo Q. C., Jin Y. C. (1999) Modeling sediment transport using depth-averaged and moment equations, J. Hydraul. Eng., 125(12), 1262–1269. Search in Google Scholar

Guy H. P., Simons D. B., Richardson E. V. (1966) Summary of Alluvial Channel Data from Flume Experiments, 1956–61, Professional Paper 462-I, USGS, Washington, DC, USA. Search in Google Scholar

Harten A., Lax P. D., van Leer B. (1983) On upstream di erencing and Godunov-type scheme for hyperbolic conservation laws, SIAM Rev. Soc. Ind. Appl. Math., 25(1), 35–61. Search in Google Scholar

Hirsch C. (2007) Numerical Computation of Internal and External Flows: Vol. 1 Fundamentals of Computational Fluid Dynamics, 2nd ed., Elsevier: Oxford, UK. Search in Google Scholar

Jin Y., Li B. (1996) The use of a one-dimensional depth-averaged moment of momentum equation for the non-hydrostatic pressure condition, Can. J. Civ. Eng., 23, 150–156. Search in Google Scholar

Karim F. (1995) Bed configuration and hydraulic resistance in alluvial-channel flows, J. Hydraul. Eng., 121(1), 15–25. Search in Google Scholar

Kim D. H., Lynett P. J., Socolofsky S. (2009) A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows, Ocean Model., 27(3–4), 198–214. Search in Google Scholar

Komura S. (1963) Discussion of “Sediment Transportation Mechanics: Introduction and Properties of Sediment, Progress Report by the Task Committee on Preparation of Sedimentation Manual of the Committee on Sedimentation of the Hydraulics Division”, J. Hydraul. Div., 89(HY1), 263–266. doi:10.1061/JYCEAJ.0000837. Search in Google Scholar

LeVeque R. J. (2004) Finite-Volume Methods for Hyperbolic Problems, Cambridge University Press: Cambridge, UK. Search in Google Scholar

Liang D., Zhao X., Soga K. (2020) Simulation of overtopping and seepage induced dike failure using two-point MPM, Soils Found., 60, 978–988. Search in Google Scholar

Lin B. N. (1984) Current study of unsteady transport of sediment in China, [In:] Proceedings of the Japan–China Bilateral Seminar on River Hydraulics and Engineering Experiences, Tokyo, Kyoto, and Sapporo, Japan, 23 July–6 Aug., 337–342. Search in Google Scholar

Marsooli R., Wu W. (2015) Three-dimensional numerical modeling of dam-break flows with sediment transport over movable beds, J. Hydraul. Eng., 141, doi:10.1061/(ASCE)HY.1943-7900.0000947. Search in Google Scholar

Mizutani H., Nakagawa H., Yoden T., Kawaike K., Zhang H. (2013) Numerical modeling of river embankment failure due to overtopping flow considering infiltration e ects, J. Hydraul. Res., 51(6), 681–695. Search in Google Scholar

Montes J. S. (1973) Interaction of Two-Dimensional Turbulent Flow with Suspended Particles, Ph.D. Thesis, Massachusetts Institute of Technology, Boston, MA, USA. Search in Google Scholar

Pickert G., Weitbrecht V., Bieberstein A. (2011) Breaching of overtopped river embankments controlled by apparent cohesion, J. Hydraul. Res., 49(2), 143–156. Search in Google Scholar

Pontillo M., Schmocker L., Greco M., Hager W. H. (2010) One-dimensional numerical evaluation of dike erosion due to overtopping, J. Hydraul. Res., 48(5), 573–582. Search in Google Scholar

Ramirez-León H., Cuevas C. R., Díaz E. H. (2005) Multilayer hydrodynamic models and their application to sediment transport in estuaries, [In:] Current Trends in High Performance Computing and Its Applications, Zhang et al (eds.), Springer, 59–70, doi:10.1007/3-540-27912-1−6. Search in Google Scholar

Reynolds O. (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. Royal Soc. A, 186, 123–164, doi:10.1098/rsta.1895.0004. Search in Google Scholar

Richardson J. F., Zaki W. N. (1997) Sedimentation and fluidization: Part I, Chem. Eng. Res. Des., 75(1), S82–S100. doi:10.1016/S0263-8762(97)80006-8. Search in Google Scholar

Rowan T. (2019) Advances in Modeling and Numerical Simulation of Sediment Transport in Shallow-Water Flows, Ph.D. Thesis, Durham University, Durham, UK. Search in Google Scholar

Schlichting H., Gersten K. (2017) Boundary-Layer Theory, 9th ed., Springer-Verlag GmbH Berlin Heidelberg, Germany. Search in Google Scholar

Schmocker L. (2011) Hydraulics of Dike Breaching, Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland. Search in Google Scholar

Soares-Frazão S., Guinot V. (2008) A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels, Int. J. Numer. Methods Fluids, 58(3), 237–261. Search in Google Scholar

Steffler P. M., Jin Y. (1993) Depth averaged and moment equations for moderately shallow free-surface flow, J. Hydraul. Res., 31(1), 5–17. Search in Google Scholar

Suwa H. (1988) Focusing Mechanisms of Large Boulders to a Debris-Flow Front, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan. Search in Google Scholar

Tabrizi A. A. (2016) Modeling Embankment Breach due to Overtopping, Ph.D. Thesis, University of South Carolina, Columbia, SC, USA. Search in Google Scholar

Takahashi T. (2014) Debris Flow: Mechanics, Prediction and Counter Measures, 2nd ed. CRC Press, Taylor and Francis Group: Boca Raton, FL, USA. Search in Google Scholar

Tingsanchali T., Supharatid S. (1996) Experimental investigation and analysis of HEC-6 river morphological model, Hydrol. Process., 10, 747–761. Search in Google Scholar

Toro E. F. (2009) Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed., Springer-Verlag Berlin Heidelberg, Germany. Search in Google Scholar

van Rijn L. C. (1984a) Sediment transport, Part I: Bed-load transport, J. Hydraul. Eng., 110(10), 1431–1456. Search in Google Scholar

van Rijn L. C. (1984b) Sediment transport, Part II: Suspended-load transport, J. Hydraul. Eng., 110(11), 1613–1641. Search in Google Scholar

van Rijn L. C. (1986) Mathematical modeling of suspended sediment in non-uniform flows, J. Hydraul. Eng., 112(6), 433–455. Search in Google Scholar

Vasquez J. A., Millar R. G., Ste er P. M. (2011) Vertically averaged and moment model for meandering river morphology, Can. J. Civ. Eng., 38(8), 921–931. Search in Google Scholar

Vreugdenhil C. B. (1994) Numerical Methods for Shallow-Water Flow, Kluwer Academic Publishers: Dordrecht, The Netherlands. Search in Google Scholar

Wai O., Lu Q., Li Y. S. (1996) Multilayer modeling of three-dimensional hydrodynamic transport processes, J. Hydraul. Res., 34(5), 677–693. Search in Google Scholar

Wei G., Kirby J. T. (1995) Time-dependent numerical code for extended Boussinesq equations, J. Waterw. Port Coast. Ocean Eng., 121(5), 251–261. Search in Google Scholar

Wu W., Wang S. S. Y., Jia Y. (2000) Non-uniform sediment transport in alluvial rivers, J. Hydraul. Res., 38(6), 427–434. Search in Google Scholar

Wu W., Wang S. S. Y. (2006) Formulas for sediment porosity and settling velocity, J. Hydraul. Eng., 132(8), 858–862. Search in Google Scholar

Wu W., Wang S. S. Y. (2007) One-dimensional modeling of dam-break flow over movable beds, J. Hydraul. Eng., 133(1), 48–58. Search in Google Scholar

Wu W., Wang S. S. Y. (2008) One-dimensional explicit finite-volume model for sediment transport, J. Hydraul. Res., 46(1), 87–98. Search in Google Scholar

Xia J., Lin B., Falconer A. R., Wang G. (2010) Modeling dam-break flows over mobile beds using a 2D coupled approach, Adv. Water Resour., 33(2), 171–183. Search in Google Scholar

Yamamoto S., Daiguji H. (1993) Higher-order accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations, Comput. Fluids, 22(2–3), 259–270. Search in Google Scholar

Zerihun Y. T. (2004) A One-Dimensional Boussinesq-Type Momentum Model for Steady Rapidly-Varied Open-Channel Flows, Ph.D. Thesis, The University of Melbourne, Melbourne, Vic, Australia. Search in Google Scholar

Zerihun Y. T., Fenton J. D. (2006) One-dimensional simulation model for steady transcritical free-surface flows at short length transitions, Adv. Water Resour., 29(11), 1598–1607. Search in Google Scholar

Zerihun Y. T., Fenton J. D. (2007) A Boussinesq-type model for flow over trapezoidal profile weirs, J. Hydraul. Res., 45(4), 519–528. Search in Google Scholar

Zerihun Y. T. (2016) Modeling free-surface flow with curvilinear streamlines by a non-hydrostatic model, J. Hydrol. Hydromech., 64(3), 281–288. Search in Google Scholar

Zerihun Y. T. (2019) On steady two-dimensional free-surface flows with spatially-varied discharges, Slovak J. Civ. Eng., 27(3), 1–11. Search in Google Scholar

Zerihun Y. T. (2020) Free flow and discharge characteristics of trapezoidal-shaped weirs, Fluids, 5(4), doi:10.3390/fluids5040238. Search in Google Scholar

Zerihun Y. T. (2021) Non-hydrostatic transitional open-channel flows from a supercritical to a subcritical state, Slovak J. Civ. Eng., 29(2), 39–48. Search in Google Scholar

Zerihun Y. T. (2023) A study of the sedimentation and storage capacity depletion of a reservoir, Slovak J. Civ. Eng., 31(2), 37–47. Search in Google Scholar

eISSN:
2300-8687
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other