[
Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe & G. Kitagawa (Eds.), Selected papers of hirotugu akaike (pp. 199-213). Springer, New York, NY.10.1007/978-1-4612-1694-0_15
]Search in Google Scholar
[
Argenton, L. M., Prest, T., Tiziano, A., Tamara, P., Tonzar, C., & Verstegen, I. (2019). “Il pittore deve studiare con regola”. Arte e psicologia della visione in Leonardo da Vinci con lo sguardo di Alberto Argenton e della scuola di psicologia della gestalt dell’universita di trieste.
]Search in Google Scholar
[
Asch, S. E. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs: General and Applied, 70(9), 1–70. doi:10.1037/h0093718
]Open DOISearch in Google Scholar
[
Ball, P. (2010). Behind the Mona Lisa’s smile. Nature, 466(7307), 694–694.
]Search in Google Scholar
[
Beedie, C., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition & Emotion, 19(6), 847–878.10.1080/02699930541000057
]Search in Google Scholar
[
Box, G. E. P., & Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis (Wiley classics library ed). New Jersey, US: Wiley.10.1002/9781118033197
]Search in Google Scholar
[
Bürkner, P. C. (2017a). Advanced Bayesian multilevel modeling with the r package brms. arXiv Preprint arXiv:1705.11123.10.32614/RJ-2018-017
]Search in Google Scholar
[
Bürkner, P. C., & (2017b). Brms: An r package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.10.18637/jss.v080.i01
]Search in Google Scholar
[
Bürkner P-C, Vuorre M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 77–101. doi:10.1177/2515245918823199
]Open DOISearch in Google Scholar
[
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.10.18637/jss.v076.i01
]Search in Google Scholar
[
Carroll, J., & Russell, J. (1996). Do facial expressions signal specific emotions? Judging emotion from the face in context. Journal of Personality and Social Psychology, 70(2), 205.10.1037/0022-3514.70.2.205
]Search in Google Scholar
[
Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2000). Computing bayesian credible and HPD intervals. In M.-H. Chen, Q.-M. Shao, & J. G. Ibrahim (Eds.), Monte Carlo Methods in Bayesian Computation (pp. 213–235). Springer. doi:10.1007/978-1-4612-1276-8_7
]Open DOISearch in Google Scholar
[
da Vinci, L. (1632/1817). Trattato della pittura. Stamp. de Romanis.
]Search in Google Scholar
[
De Valois, R., & De Valois, K. (1980). Spatial vision. Annual Review of Psychology, 31(1), 309–341.10.1146/annurev.ps.31.020180.0015217362215
]Search in Google Scholar
[
Dienes, Z. (2014). Using bayes to get the most out of non-significant results. Frontiers in Psychology, 5, doi:10.3389/fpsyg.2014.00781411419625120503
]Open DOISearch in Google Scholar
[
Elias, M., & Cotte, P. (2008). Multispectral camera and radiative transfer equation used to depict Leonardo’s sfumato in Mona Lisa. Applied Optics, 47(12), 2146–2154.10.1364/AO.47.00214618425189
]Search in Google Scholar
[
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.10.1214/ss/1177011136
]Search in Google Scholar
[
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Boca Raton, Florida, US: Chapman; Hall/CRC.10.1201/9780429258411
]Search in Google Scholar
[
Gilchrist, A. (2020). The integrity of vision. Perception, 49(10), 999–1004. doi:10.1177/030100662095837232956025
]Open DOISearch in Google Scholar
[
Goffaux, V., & Rossion, B. (2006). Faces are “spatial”—holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology. Human Perception and Performance, 32, 1023–1039. doi:10.1037/0096-1523.32.4.102316846295
]Open DOISearch in Google Scholar
[
Gombrich, E. H. (1995). The story of art (Vol. 12). London, UK: Phaidon.
]Search in Google Scholar
[
Hespanhol, L., Vallio, C. S., Costa, L. M., & Saragiotto, B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. Brazilian Journal of Physical Therapy, 23(4), 290–301. doi:10.1016/j.bjpt.2018.12.006663011330638956
]Open DOISearch in Google Scholar
[
Jeffreys, H. (1961). The theory of probability. Oxford, UK: Oxford University Press.
]Search in Google Scholar
[
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69. doi:10.1037/a002834722612667
]Open DOISearch in Google Scholar
[
Kanizsa, G. (1954): Il gradiente marginale come fattore dell‘aspetto fenomenico dei colori. Archivio di Psicologia, Neurologia e Psichiatrica, 15, 251–264.
]Search in Google Scholar
[
Kanizsa, G. (1979): Organization in vision: Essays on gestalt perception. New York, NY: Praeger.
]Search in Google Scholar
[
Kardos, L. (1934). Ding und schatten. Eine experimentelle untersuchung über die grundlagen des farbensehens. Zeitschrift für Psychologie Und Physiologie Der Sinnesorgane. Abt. 1. Zeitschrift Für Psychologie.
]Search in Google Scholar
[
Katz, D. (1911). Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung. Zeitschrift für Psychologie, 7(1). JA Barth.
]Search in Google Scholar
[
Kemp, M. J. (1977). Leonardo and the visual pyramid. Journal of the Warburg and Courtauld Institutes, (40,) 128–149.10.2307/750993
]Search in Google Scholar
[
Kemp, M. J., Cotte, P., Schwan, E., Strinati, C., & Biro, P. P. (2010). La Bella Principessa: The Story of the New Masterpiece by Leonardo da Vinci. London, UK: Hodder & Stoughton.
]Search in Google Scholar
[
Kontsevich, L. L., & Tyler, C. W. (2004). What makes Mona Lisa smile? Vision Research, 44(13), 1493–1498.10.1016/j.visres.2003.11.02715126060
]Search in Google Scholar
[
Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573–603. doi:10.1037/a002914622774788
]Open DOISearch in Google Scholar
[
Kruschke, J. (2015). Doing bayesian data analysis: A tutorial with R, JAGS, and Stan. Elsevier Science. Amsterdam, Netherlands. ISBN: 978-0-12-405916-0
]Search in Google Scholar
[
Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-128405907
]Search in Google Scholar
[
Lenth, R.V. (2021). Emmeans: Estimated Marginal Means, aka least-squares means [Manual] url: https://CRAN.R-project.org/package=emmeans
]Search in Google Scholar
[
Liaci, E., Fischer, A., Heinrichs, M., van Elst, L. T., & Kornmeier, J. (2017). Mona Lisa is always happy–and only sometimes sad. Scientific Reports, 7(1), 1–10.10.1038/srep43511534509028281547
]Search in Google Scholar
[
Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348.10.1016/j.jesp.2018.08.009
]Search in Google Scholar
[
Livingstone, M. (2000). Is it warm? Is it real? Or just low spatial frequency? Science, 290(5495), 1299–1299.
]Search in Google Scholar
[
Livingstone, M., & Hubel, D. (2002). Vision and Art: The Biology of Seeing (Vol. 2). New York, NY: Harry N. Abrams.
]Search in Google Scholar
[
Mamassian, P. (2008). Ambiguities and conventions in the perception of visual art. Vision Research, 48(20), 2143–2153.10.1016/j.visres.2008.06.01018619482
]Search in Google Scholar
[
Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59, 537–563.10.1146/annurev.psych.59.103006.09373517937603
]Search in Google Scholar
[
McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon statistical significance. The American Statistician, 73(Supp1.), 235–245.10.1080/00031305.2018.1527253
]Search in Google Scholar
[
Muth, C., & Carbon, C.-C. (2016). SeIns: Semantic instability in art. Art & Perception, 4(1–2), 145–184.10.1163/22134913-00002049
]Search in Google Scholar
[
Nagel, A. (1993). Leonardo and sfumato. RES: Anthropology and Aesthetics, 24(1), 7–20.10.1086/RESv24n1ms20166875
]Search in Google Scholar
[
Palmer, A. L. (2018). Leonardo da Vinci: A reference guide to his life and works. Lanham, Maryland, US: Rowman & Littlefield.
]Search in Google Scholar
[
Palmer, S. E., Brooks, J. L., & Nelson, R. (2003). When does grouping happen? Acta Psychologica, 114(3), 311–330.10.1016/j.actpsy.2003.06.00314670702
]Search in Google Scholar
[
Pater, W. (1917). La renaissance. Paris: France Library Payot.
]Search in Google Scholar
[
Sergent, J. (1994). Brain-imaging studies of cognitive functions. Trends in Neurosciences, 17(6), 221–227.10.1016/0166-2236(94)90002-77521081
]Search in Google Scholar
[
Shulman, G. L., & Wilson, J. (1987). Spatial frequency and selective attention to local and global information. Perception, 16(1), 89–101.10.1068/p1600893671045
]Search in Google Scholar
[
Soranzo, A., & Agostini, T. (2006a). Does perceptual belongingness affect lightness constancy? Perception, 35(2), 185–192. doi:10.1068/p534216583764
]Open DOISearch in Google Scholar
[
Soranzo, A., & Agostini, T. (2006b). Photometric, geometric, and perceptual factors in illumination-independent lightness constancy. Perception & Psychophysics, 68(1), 102–113.10.3758/BF0319366016617834
]Search in Google Scholar
[
Soranzo, A., & Newberry, M. (2015). The uncatchable smile in Leonardo da Vinci’s la Bella Principessa portrait. Vision Research, 113, 78–86.10.1016/j.visres.2015.05.01426049039
]Search in Google Scholar
[
Soranzo, A., & Newberry, M. (2016). Investigating the ’Uncatchable Smile’ in Leonardo da Vinci’s la Bella Principessa: A comparison with the Mona Lisa and Pollaiuolo’s portrait of a girl. JoVE (Journal of Visualized Experiments), 116, e54248.10.3791/54248509216427768043
]Search in Google Scholar
[
Team, R. C. (2019). 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
]Search in Google Scholar
[
Van der Linden, S., & Chryst, B. (2017). No need for Bayes factors: A fully Bayesian evidence synthesis. Frontiers in Applied Mathematics and Statistics, 3, 12.10.3389/fams.2017.00012
]Search in Google Scholar
[
Vasari, G. (1882). Le vite de più eccellenti pittori, scultori ed architettori (Vol. 8). Florence, Italy: GC Sansoni.
]Search in Google Scholar
[
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.10.1007/s11222-016-9696-4
]Search in Google Scholar
[
Verstegen, I. (2005). Mona Lisa’s smile: The place of experimental phenomenology within Gestalt Theory. Gestalt Theory, 27(2), 91–106.
]Search in Google Scholar
[
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.10.3758/BF03194105
]Search in Google Scholar
[
Wagenmakers, E.-J., Gronau, Q. F., & Vandekerckhove, J. (2019). Five Bayesian Intuitions for the Stopping Rule Principle [Preprint]. PsyArXiv. doi:10.31234/osf.io/5ntkd
]Open DOISearch in Google Scholar
[
Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12), 3571–3594.
]Search in Google Scholar
[
Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II [Laws of organization in perceptual forms]. Psychologische Forschung, 4, 301–350. Translation published in Ellis, W. (ed.) (1938): A Source Book of Gestalt Psychology, 71-88. London: Routledge & Kegan Paul.
]Search in Google Scholar
[
Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vision Research, 48(17), 1837–1851.10.1016/j.visres.2008.05.008583913018585750
]Search in Google Scholar