Open Access

An indirect approach to predict deadwood biomass in forests of Ukrainian Polissya using Landsat images and terrestrial data


Cite

Angelstam, P., Kuuluvainen, T. 2004. Boreal forest disturbance regimes, successional dynamics and landscape structures – a European perspective. – Ecological Bulletins, 51, 117–136.AngelstamP.KuuluvainenT.2004Boreal forest disturbance regimes, successional dynamics and landscape structures – a European perspectiveEcological Bulletins51117136Search in Google Scholar

Belgiu, M., Drăguţ, L. 2016. Random forest in remote sensing: a review of applications and future directions. – ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.BelgiuM.DrăguţL.2016Random forest in remote sensing: a review of applications and future directionsISPRS Journal of Photogrammetry and Remote Sensing114243110.1016/j.isprsjprs.2016.01.011Search in Google Scholar

Bilous, A., Matsala, M., Radchenko, V., Matiashuk, R., Boyko, S., Bilous, S. 2019. Coarse woody debris in mature oak stands of Ukraine: carbon stock and decomposition features. – Forestry Ideas, 1(57), 196–219.BilousA.MatsalaM.RadchenkoV.MatiashukR.BoykoS.BilousS.2019Coarse woody debris in mature oak stands of Ukraine: carbon stock and decomposition featuresForestry Ideas157196219Search in Google Scholar

Bilous, A., Myroniuk, V., Holiaka, D., Bilous, S., See, L., Schepaschenko, D. 2017. Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine. – Environmental Research Letters, 12, e105001.BilousA.MyroniukV.HoliakaD.BilousS.SeeL.SchepaschenkoD.2017Mapping growing stock volume and forest live biomass: a case study of the Polissya region of UkraineEnvironmental Research Letters12e10500110.1088/1748-9326/aa8352Search in Google Scholar

Breiman, L. 2001. Random Forests. – Machine Learning, 45(1), 5–32.BreimanL.2001Random ForestsMachine Learning45153210.1023/A:1010933404324Search in Google Scholar

Chen, T., Guestrin, C. 2016. XGBoost: a scalable tree boosting system. – KDD’ 16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA, Aug. 2016. San Francisco, California, 785–794.ChenT.GuestrinC.2016XGBoost: a scalable tree boosting systemKDD’ 16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningUSAAug. 2016San Francisco, California785794Search in Google Scholar

Civco, D.L. 1993. Artificial neural networks for land-cover classification and mapping. – International Journal of Geographical Information Systems, 7(2), 173–186. https://doi.org/10.1080/02693799308901949.CivcoD.L.1993Artificial neural networks for land-cover classification and mappingInternational Journal of Geographical Information Systems72173186https://doi.org/10.1080/02693799308901949.10.1080/02693799308901949Search in Google Scholar

Cohen, W.B., Goward, S.N. 2004. Landsat’s role in ecological applications of remote sensing. – BioScience, 54(6), 535–545. https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2.CohenW.B.GowardS.N.2004Landsat’s role in ecological applications of remote sensingBioScience546535545https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2.10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2Search in Google Scholar

Cohen, W.B., Yang, Z., Kennedy, R. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – Tools for calibration and validation. – Remote Sensing of Environment, 114(12), 2911–2924.CohenW.B.YangZ.KennedyR.2010Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – Tools for calibration and validationRemote Sensing of Environment114122911292410.1016/j.rse.2010.07.010Search in Google Scholar

Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. – Remote Sensing of Environment, 37(1), 35–46.CongaltonR.G.1991A review of assessing the accuracy of classifications of remotely sensed dataRemote Sensing of Environment371354610.1016/0034-4257(91)90048-BSearch in Google Scholar

Crookston, N.L., Finley, A.O. 2008. yaImpute: An R package for k-NN imputation. – Journal of Statistical Software, 23(10). 16pp.CrookstonN.L.FinleyA.O.2008yaImpute: An R package for k-NN imputationJournal of Statistical Software23101610.18637/jss.v023.i10Search in Google Scholar

Dube, T., Mutanga, O., Elhadi, A., Ismail, R. 2014. Intra-and-inter species biomass prediction in a plantation forest: testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advance machine learning algorithms. – Sensors, 14(8), 15348–15370. https://doi.org/10.3390/s140815348.DubeT.MutangaO.ElhadiA.IsmailR.2014Intra-and-inter species biomass prediction in a plantation forest: testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advance machine learning algorithmsSensors1481534815370https://doi.org/10.3390/s140815348.10.3390/s140815348Search in Google Scholar

Evans, J.S., Cushman, S.A. 2009. Gradient modelling of conifer species using random forests. – Landscape Ecology, 24, 673–683.EvansJ.S.CushmanS.A.2009Gradient modelling of conifer species using random forestsLandscape Ecology2467368310.1007/s10980-009-9341-0Search in Google Scholar

Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. – Forest Ecology and Management, 155, 399–423. https://doi.org/10.1016/S0378-1127(01)00575-8.FranklinJ.F.SpiesT.A.PeltR.V.CareyA.B.ThornburghD.A.BergD.R.LindenmayerD.B.HarmonM.E.KeetonW.S.ShawD.C.BibleK.ChenJ.2002Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an exampleForest Ecology and Management155399423https://doi.org/10.1016/S0378-1127(01)00575-8.10.1016/S0378-1127(01)00575-8Search in Google Scholar

Fu, Y., He, H.S., Hawbaker, T.J, Henne, P.D, Zhu, Z., Larsen, D.R. 2019. Evaluating k-Nearest Neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in Northeast China. – Remote Sensing, 11(17). https://doi.org/10.3390/rs11172005.FuY.HeH.S.HawbakerT.JHenneP.DZhuZ.LarsenD.R.2019Evaluating k-Nearest Neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in Northeast ChinaRemote Sensing1117https://doi.org/10.3390/rs11172005.10.3390/rs11172005Search in Google Scholar

Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R. 2006. Random Forests for land cover classification. – Pattern Recognition Letters, 27(4), 294–300.GislasonP.O.BenediktssonJ.A.SveinssonJ.R.2006Random Forests for land cover classificationPattern Recognition Letters27429430010.1016/j.patrec.2005.08.011Search in Google Scholar

Gonzalez, R.S., Latifi, H., Weinacker, H., Dees, M., Koch, B., Heurich, M. 2018. Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. – International Journal of Remote Sensing, 39(23), 8859–8884 https://doi.org/10.1080/01431161.2018.1500071.GonzalezR.S.LatifiH.WeinackerH.DeesM.KochB.HeurichM.2018Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscapeInternational Journal of Remote Sensing392388598884https://doi.org/10.1080/01431161.2018.1500071.10.1080/01431161.2018.1500071Search in Google Scholar

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. – Remote Sensing of Environment, 202, 18–27.GorelickN.HancherM.DixonM.IlyushchenkoS.ThauD.MooreR.2017Google Earth Engine: Planetary-scale geospatial analysis for everyoneRemote Sensing of Environment202182710.1016/j.rse.2017.06.031Search in Google Scholar

Greenwell, B., Boehmke, B., Cunningham, J. 2019. GBM: generalized boosted regression models. CRAN repository, version 2.1.5. [WWW document]. – URL https://CRAN.R-project.org/package=gbm. [Accessed 20 February 2020].GreenwellB.BoehmkeB.CunninghamJ.2019GBM: generalized boosted regression modelsCRAN repository, version 2.1.5. [WWW document]. – URL https://CRAN.R-project.org/package=gbm. [Accessed 20 February 2020].Search in Google Scholar

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G. 2013. High-resolution global maps of 21-century forest cover change. – Science, 342, 850–853. https://doi.org/10.1126/science.1244693.HansenM.C.PotapovP.V.MooreR.HancherM.TurubanovaS.A.TyukavinaA.ThauD.StehmanS.V.GoetzS.J.LovelandT.R.KommareddyA.EgorovA.ChiniL.JusticeC.O.TownshendJ.R.G.2013High-resolution global maps of 21-century forest cover changeScience342850853https://doi.org/10.1126/science.1244693.10.1126/science.124469324233722Search in Google Scholar

Hayes, M.M., Miller, S.N., Murphy, M.A. 2014. High-resolution landcover classification using Random Forest. – Remote Sensing Letters, 5(2), 112–121. https://doi.org/10.1080/2150704X.2014.882526.HayesM.M.MillerS.N.MurphyM.A.2014High-resolution landcover classification using Random ForestRemote Sensing Letters52112121https://doi.org/10.1080/2150704X.2014.882526.10.1080/2150704X.2014.882526Search in Google Scholar

Jhonnerie, R., Siregar, V.P., Nababan, B., Prasetyo, L.B, Wouthuyzen, S. 2015. Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. – Procedia Environmental Sciences, 24, 215–221. https://doi.org/10.1016/j.proenv.2015.03.028.JhonnerieR.SiregarV.P.NababanB.PrasetyoL.BWouthuyzenS.2015Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageriesProcedia Environmental Sciences24215221https://doi.org/10.1016/j.proenv.2015.03.028.10.1016/j.proenv.2015.03.028Search in Google Scholar

Kauth, R.J., Thomas, G.S. 1976. The tasselled cap – a graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. – Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, USA, June/July 1976. Indiana, 4B–41 to 4B–51.KauthR.J.ThomasG.S.1976The tasselled cap – a graphic description of the spectral-temporal development of agricultural crops as seen by LANDSATProceedings of the Symposium on Machine Processing of Remotely Sensed DataUSAJune/July 1976Indiana4B–41 to 4B–51.Search in Google Scholar

Kennedy, R.E., Yang, Z., Cohen, W.B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms. – Remote Sensing of Environment, 114(12), 2897–2910.KennedyR.E.YangZ.CohenW.B.2010Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithmsRemote Sensing of Environment114122897291010.1016/j.rse.2010.07.008Search in Google Scholar

Kuhn, M. 2008. Building predictive models in R using the caret package. – Journal of Statistical Software, 28(5). https://doi.org/10.18637/jss.v028.i05.KuhnM.2008Building predictive models in R using the caret packageJournal of Statistical Software285https://doi.org/10.18637/jss.v028.i05.10.18637/jss.v028.i05Search in Google Scholar

Lakyda, P., Shvidenko, A., Bilous, A., Myroniuk, V., Matsala, M., Zibtsev, S., Schepaschenko, D., Holiaka, D., Vasylyshyn, R., Lakyda, I., Diachuk, P., Kraxner, F. 2019. Impact of disturbances on the carbon cycle of forest ecosystems in Ukrainian Polissya. – Forests, 10, 337. https://doi.org/10.3390/f10040337.LakydaP.ShvidenkoA.BilousA.MyroniukV.MatsalaM.ZibtsevS.SchepaschenkoD.HoliakaD.VasylyshynR.LakydaI.DiachukP.KraxnerF.2019Impact of disturbances on the carbon cycle of forest ecosystems in Ukrainian PolissyaForests10337https://doi.org/10.3390/f10040337.10.3390/f10040337Search in Google Scholar

Latifi, H., Fassnacht, F.E., Hartig, F., Berger, C., Hernandez, F., Corvalan, P., Koch, B. 2015. Stratified aboveground forest biomass estimation by remote sensing data. – International Journal of Applied Earth Observation and Geoinformation, 38, 229–241.LatifiH.FassnachtF.E.HartigF.BergerC.HernandezF.CorvalanP.KochB.2015Stratified aboveground forest biomass estimation by remote sensing dataInternational Journal of Applied Earth Observation and Geoinformation3822924110.1016/j.jag.2015.01.016Search in Google Scholar

Lesiv, M., Shvidenko, A., Schepaschenko, D., See, L., Fritz, S. 2018. A spatial assessment of the forest carbon budget for Ukraine. – Mitigation and Adaption Strategies for Global Change, 24(6), 985–1006.LesivM.ShvidenkoA.SchepaschenkoD.SeeL.FritzS.2018A spatial assessment of the forest carbon budget for UkraineMitigation and Adaption Strategies for Global Change246985100610.1007/s11027-018-9795-ySearch in Google Scholar

Li, M., Im, J., Beier, C. 2013. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. – GIScience & Remote Sensing, 50(4), 361–384. https://doi.org/10.1080/15481603.2013.819161.LiM.ImJ.BeierC.2013Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife ForestGIScience & Remote Sensing504361384https://doi.org/10.1080/15481603.2013.819161.10.1080/15481603.2013.819161Search in Google Scholar

Liaw, A. Wiener, M. 2002. Classification and regression by randomForest. – R News, 2(3), 18–22.LiawA.WienerM.2002Classification and regression by randomForestR News231822Search in Google Scholar

Lim, K., Treitz, P., Wulder, M., St-Onge B., Flood M. 2003. LiDAR remote sensing of forest structure. – Progress in Physical Geography: Earth and Environment, 27(1), 88–106. https://doi.org/10.1191/0309133303pp360ra.LimK.TreitzP.WulderM.St-OngeB.FloodM.2003LiDAR remote sensing of forest structureProgress in Physical Geography: Earth and Environment27188106https://doi.org/10.1191/0309133303pp360ra.10.1191/0309133303pp360raSearch in Google Scholar

Liu, W., Song, C., Schroeder, T.A., Cohen, W.B. 2008. Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis data. – International Journal of Remote Sensing, 29(13), 3855–3872.LiuW.SongC.SchroederT.A.CohenW.B.2008Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis dataInternational Journal of Remote Sensing29133855387210.1080/01431160701840166Search in Google Scholar

Maxwell, A.E., Warner, T.A, Fang, F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. – International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343.MaxwellA.E.WarnerT.AFangF.2018Implementation of machine-learning classification in remote sensing: an applied reviewInternational Journal of Remote Sensing39927842817https://doi.org/10.1080/01431161.2018.1433343.10.1080/01431161.2018.1433343Search in Google Scholar

McRoberts, R.E. 2012. Estimating forest attribute parameters for small areas using nearest neighbors techniques. – Forest Ecology and Management, 272, 3–12. https://doi.org/10.1016/j.foreco.2011.06.039.McRobertsR.E.2012Estimating forest attribute parameters for small areas using nearest neighbors techniquesForest Ecology and Management272312https://doi.org/10.1016/j.foreco.2011.06.039.10.1016/j.foreco.2011.06.039Search in Google Scholar

Myroniuk, V. 2018. Forest cover mapping using Landsat-based seasonal composite mosaics. (Класифікація лісового покриву за сезонними композитними мозаїками Landsat). – Scientific Bulletin of UNFU, 28(1), 28–33. (In Ukrainian).MyroniukV.2018Forest cover mapping using Landsat-based seasonal composite mosaics. (Класифікація лісового покриву за сезонними композитними мозаїками Landsat)Scientific Bulletin of UNFU2812833(In Ukrainian).10.15421/40280105Search in Google Scholar

Lang, M., Arumäe, T., Lükk, T., Sims, A. 2014. Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 61, 47–68. https://doi.org/10.2478/fsmu-2014-0010.LangM.ArumäeT.LükkT.SimsA.2014Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar dataForestry Studies / Metsanduslikud Uurimused614768https://doi.org/10.2478/fsmu-2014-0010.10.2478/fsmu-2014-0010Search in Google Scholar

Lang, M., Kaha, M., Laarmann, D., Sims, A. 2018. Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithm. – Forestry Studies / Metsanduslikud Uurimused, 68, 5–24. https://doi.org/10.2478/fsmu-2018-0001.LangM.KahaM.LaarmannD.SimsA.2018Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithmForestry Studies / Metsanduslikud Uurimused68524https://doi.org/10.2478/fsmu-2018-0001.10.2478/fsmu-2018-0001Search in Google Scholar

Nitze, I., Barrett, B., Cawkwell, F. 2015. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. – International Journal of Applied Earth Observation and Geoinformation, 34, 136–146. https://doi.org/10.1016/j.jag.2014.08.001.NitzeI.BarrettB.CawkwellF.2015Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-seriesInternational Journal of Applied Earth Observation and Geoinformation34136146https://doi.org/10.1016/j.jag.2014.08.001.10.1016/j.jag.2014.08.001Search in Google Scholar

Oeser, J., Pflugmacher, D., Senf, C., Heurich, M., Hostert, P. 2017. Using intra-annual landsat time series for attributing forest disturbance agents in Central Europe. – Forests, 8, 251. https://doi.org/10.3390/f8070251.OeserJ.PflugmacherD.SenfC.HeurichM.HostertP.2017Using intra-annual landsat time series for attributing forest disturbance agents in Central EuropeForests8251https://doi.org/10.3390/f8070251.10.3390/f8070251Search in Google Scholar

Pflugmacher, D., Cohen, W.B., Kennedy, R.E. 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. – Remote Sensing of Environment, 122, 146–165. https://doi.org/10.1016/j.rse.2011.09.025.PflugmacherD.CohenW.B.KennedyR.E.2012Using Landsat-derived disturbance history (1972–2010) to predict current forest structureRemote Sensing of Environment122146165https://doi.org/10.1016/j.rse.2011.09.025.10.1016/j.rse.2011.09.025Search in Google Scholar

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL http://www.R-project.org/. [Accessed 20 February 2020].R Core Team2019R: A language and environment for statistical computingR Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL http://www.R-project.org/. [Accessed 20 February 2020].Search in Google Scholar

Ruefenacht, B., Finco, M.V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A., Holden, G.R., Lister, A.J., Salajanu, D., Weyermann, D., Winterberger, K. 2008. Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis data. – Photogrammetric Engineering & Remote Sensing, 11, 1379–1388. https://doi.org/10.14358/PERS.74.11.1379.RuefenachtB.FincoM.V.NelsonM.D.CzaplewskiR.HelmerE.H.BlackardJ.A.HoldenG.R.ListerA.J.SalajanuD.WeyermannD.WinterbergerK.2008Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis dataPhotogrammetric Engineering & Remote Sensing1113791388https://doi.org/10.14358/PERS.74.11.1379.10.14358/PERS.74.11.1379Search in Google Scholar

Sachdeva, S., Bhatia, T., Verma, A.K. 2018. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. – Natural Hazards, 92, 1399–1418. https://doi.org/10.1007/s11069-018-3256-5.SachdevaS.BhatiaT.VermaA.K.2018GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mappingNatural Hazards9213991418https://doi.org/10.1007/s11069-018-3256-5.10.1007/s11069-018-3256-5Search in Google Scholar

Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D.F.R.P., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d’Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Junior, B.H.M., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z.S., Zo-Bi, I.C. 2019. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. – Scientific Data, 6(1), 198. https://doi.org/10.1038/s41597-019-0196-1.SchepaschenkoD.ChaveJ.PhillipsO.L.LewisS.L.DaviesS.J.Réjou-MéchainM.SistP.ScipalK.PergerC.HeraultB.LabrièreN.HofhanslF.Affum-BaffoeK.AleinikovA.AlonsoA.AmaniC.Araujo-MurakamiA.ArmstonJ.ArroyoL.AscarrunzN.AzevedoC.BakerT.BałazyR.BedeauC.BerryN.BilousA.M.BilousS.Y.BissiengouP.BlancL.BobkovaK.S.BraslavskayaT.BrienenR.BurslemD.F.R.P.ConditR.Cuni-SanchezA.DanilinaD.del Castillo TorresD.DerroireG.DescroixL.SottaE.D.d’OliveiraM.V.N.DreselC.ErwinT.EvdokimenkoM.D.FalckJ.FeldpauschT.R.FoliE.G.FosterR.FritzS.Garcia-AbrilA.D.GornovA.GornovaM.Gothard-BassébéE.Gourlet-FleuryS.GuedesM.HamerK.C.SusantyF.H.HiguchiN.CoronadoE.N.H.HubauW.HubbellS.IlstedtU.IvanovV.V.KanashiroM.KarlssonA.KarminovV.N.KilleenT.KoffiJ.-C.K.KonovalovaM.KraxnerF.KrejzaJ.KrisnawatiH.KrivobokovL.V.KuznetsovM.A.LakydaI.LakydaP.I.LiconaJ.C.LucasR.M.LukinaN.LussettiD.MalhiY.ManzaneraJ.A.MarimonB.JuniorB.H.M.MartinezR.V.MartynenkoO.V.MatsalaM.MatyashukR.K.MazzeiL.MemiagheH.MendozaC.MendozaA.M.MoroziukO.V.MukhortovaL.MusaS.NazimovaD.I.OkudaT.OliveiraL.C.OntikovP.V.OsipovA.F.PietschS.PlayfairM.PoulsenJ.RadchenkoV.G.RodneyK.RozakA.H.RuschelA.RutishauserE.SeeL.ShchepashchenkoM.ShevchenkoN.ShvidenkoA.SilveiraM.SinghJ.SonkéB.SouzaC.StereńczakK.StonozhenkoL.SullivanM.J.P.SzatniewskaJ.TaedoumgH.ter SteegeH.TikhonovaE.ToledoM.TrefilovaO.V.ValbuenaR.GamarraL.V.VasilievS.VedrovaE.F.VerhovetsS.V.VidalE.VladimirovaN.A.VleminckxJ.VosV.A.VozmitelF.K.WanekW.WestT.A.P.WoellH.WoodsJ.T.WortelV.YamadaT.Nur HajarZ.S.Zo-BiI.C.2019The Forest Observation System, building a global reference dataset for remote sensing of forest biomassScientific Data61198https://doi.org/10.1038/s41597-019-0196-1.10.1038/s41597-019-0196-1678701731601817Search in Google Scholar

Seidl, R., Rammer, W., Spies, T.A. 2014. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. – Ecological Applications, 24, 2063–2077. https://doi.org/10.1890/14-0255.1.SeidlR.RammerW.SpiesT.A.2014Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioningEcological Applications2420632077https://doi.org/10.1890/14-0255.1.10.1890/14-0255.1482005627053913Search in Google Scholar

Shvidenko, A., Buksha, I., Krakovska, S., Lakyda, P. 2017. Vulnerability of Ukrainian forests to climate change. – Sustainability, 9, 1152. https://doi.org/10.3390/su9071152.ShvidenkoA.BukshaI.KrakovskaS.LakydaP.2017Vulnerability of Ukrainian forests to climate changeSustainability91152https://doi.org/10.3390/su9071152.10.3390/su9071152Search in Google Scholar

Thanh Noi, P., Kappas, M. 2018. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector machine classifiers for land cover classification using Sentinel-2 imagery. – Sensors, 18(1), 18. https://doi.org/10.3390/s18010018.Thanh NoiP.KappasM.2018Comparison of Random Forest, k-Nearest Neighbor, and Support Vector machine classifiers for land cover classification using Sentinel-2 imagerySensors18118https://doi.org/10.3390/s18010018.10.3390/s18010018579627429271909Search in Google Scholar

Tomppo, E., Kuusinen, N., Mäkisara, K., Katila, M., McRoberts, R.E. 2017. Effects of field plots configuration on the uncertainties of ALS-assisted forest resource estimates. – Scandinavian Journal of Forest Research, 32(6), 488–500. https://doi.org/10.1080/02827581.2016.1259425.TomppoE.KuusinenN.MäkisaraK.KatilaM.McRobertsR.E.2017Effects of field plots configuration on the uncertainties of ALS-assisted forest resource estimatesScandinavian Journal of Forest Research326488500https://doi.org/10.1080/02827581.2016.1259425.10.1080/02827581.2016.1259425Search in Google Scholar

Zald, H.S.J, Wulder, M.A., White, J.C., Hilker, T., Hermosilla, T., Hobart, G.W., Coops, N.C. 2016. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. – Remote Sensing of Environment, 176, 188–201. https://doi.org/10.1016/j.rse.2016.01.015.ZaldH.S.JWulderM.A.WhiteJ.C.HilkerT.HermosillaT.HobartG.W.CoopsN.C.2016Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, CanadaRemote Sensing of Environment176188201https://doi.org/10.1016/j.rse.2016.01.015.10.1016/j.rse.2016.01.015Search in Google Scholar

Zimble, D.A, Evans, D.L., Carlson, G.C., Parker, R.C., Grado, S.C, Gerard, P.D. 2003. Characterizing vertical forest structure using small-footprint airborne LiDAR. – Remote Sensing of Environment, 87, 171–182. https://doi.org/10.1016/S0034-4257(03)00139-1.ZimbleD.AEvansD.L.CarlsonG.C.ParkerR.C.GradoS.CGerardP.D.2003Characterizing vertical forest structure using small-footprint airborne LiDARRemote Sensing of Environment87171182https://doi.org/10.1016/S0034-4257(03)00139-1.10.1016/S0034-4257(03)00139-1Search in Google Scholar

eISSN:
1736-8723
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other