Cite

Alcamo, J., Moreno, J. M., Nováky, B., Bindi, M., Corobov, R., Devoy, R. J. et al., 2007: Europe. Climate change 2007: impacts, adaptation and vulnerability. In: Parry, M. L. et al. (eds.): Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, p. 541–580. Search in Google Scholar

Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L., Trugman A. T., 2019: Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Global Change Biology, 25:3793–3802.10.1111/gcb.1477131323157 Search in Google Scholar

Anderson, K. J., Allen, A. P., Gillooly, J. F., Brown, J. H., 2006: Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters, 9:673–682.10.1111/j.1461-0248.2006.00914.x16706912 Search in Google Scholar

Anuchin, N. P., 1952: Forest Mensuration. Moscow-Leningrad, Goslesbumizdat, 532 p. Search in Google Scholar

Aubin, I., Boisvert-Marsh, L., Kebli, H., McKenney, D., Pedlar, J., Lawrence, K. et al., 2018: Tree vulnerability to climate change: Improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere, 9:e02108.10.1002/ecs2.2108 Search in Google Scholar

Belote, R. T., Carroll, C., Martinuzzi, S., Michalak, J., Williams, J. W., Williamson, M. A. et al., 2018: Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Scientific Reports, 8:1–13.10.1038/s41598-018-27721-6601345429930266 Search in Google Scholar

Berner, L. T., Beck, P. S. A., Bunn, A. G., Goetz, S. J., 2013: Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology, 19:3449–3462.10.1111/gcb.1230423813896 Search in Google Scholar

Blois, J. L. Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., Ferrier, S., 2013: Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 110:9374–9379.10.1073/pnas.1220228110367742323690569 Search in Google Scholar

Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., Zemp, M., 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95:1431–1443.10.1175/BAMS-D-13-00047.1 Search in Google Scholar

Booth, G. D., Niccolucci, M. J., Schuster, E. G., 1994: Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. U.S. Department of Agriculture; Intermountain Research Station. Research Paper INT-470, 13 p. Search in Google Scholar

Bošela, M., Kulla, L., Rößiger, J., Šebeň, V., Dobor, L., Büntgen, U. et al., 2019: Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. Forest Ecology and Management, 446:293–303.10.1016/j.foreco.2019.05.033 Search in Google Scholar

Buras, A., Rammig, A., Zang, C. S., 2020: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17:1655–1672.10.5194/bg-17-1655-2020 Search in Google Scholar

Čermák, P., Mikita,T., Kadavý, J., Trnka, M., 2021: Evaluating recent and future climatic suitability for the cultivation of Norway spruce in the Czech Republic in comparison with observed tree cover loss between 2001 and 2020. Forests, 12:1687.10.3390/f12121687 Search in Google Scholar

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D. et al., 2005: Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145:87–99.10.1007/s00442-005-0100-x15971085 Search in Google Scholar

Costa, A., Salvidio, S., Penner, J., Basile, M., 2021: Time-for-space substitution in N-mixture models for estimating population trends: a simulation-based evaluation. Scientific Reports, 11:4581.10.1038/s41598-021-84010-5790734633633209 Search in Google Scholar

Currie, D. J., 2001: Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems (N.Y.), 4:216–225.10.1007/s10021-001-0005-4 Search in Google Scholar

Dalponte, M., 2018: itcSegment: Individual tree crowns segmentation. R package version 0.8. Available at:https://CRAN.R-project.org/package=itcSegment. Search in Google Scholar

DeLeo, V. L., Menge, D. N., Hanks, E. M., Juenger, T. E., Lasky, J. R., 2020: Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:523–538.10.1111/gcb.1488031665819 Search in Google Scholar

Denney, D. A., Anderson, J. T., 2020: Natural history collections document biological responses to climate change: A commentary on DeLeo et al., 2020, Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:340–342.10.1111/gcb.1492231733005 Search in Google Scholar

Dent, D., 2021: The great melt. Accounts from the front-line of climate change. Alister Doyle, Cheltenham, Flint. 256 p. Available at: https://www.tandfonline.com.10.1080/00207233.2021.2006917 Search in Google Scholar

Dokuchaev, V. V., 1948: The science of the zones of nature. Moscow, Geografgiz. 63 p. Search in Google Scholar

Draper, N. R., Smith, H., 1966: Applied Regression analysis. New York, Wiley Publ. Translated under the title “Prikladnoi regressionnyi analiz”. Moscow, “Statistika” Publ., 1973. 392 p. Search in Google Scholar

Dutcă, I., Mather, R., Ioraş, F., 2018: Tree biomass allometry during the early growth of Norway spruce (Picea abies) varies between pure stands and mixtures with European beech (Fagus sylvatica). Canadian Journal of Forest Research, 48:77–84.10.1139/cjfr-2017-0177 Search in Google Scholar

Dussarrat, T., Decros, G., Díaz, F. P., Gibon, Y., Latorre, C., Rolin, D. et al., 2021: Another tale from the harsh world: How plants adapt to extreme environments. Annual Plant Reviews, 4:551–604.10.1002/9781119312994.apr0758 Search in Google Scholar

Emanuel, W. R., Shugart, H. H., Stevenson, M. P., 1985: Climate change and the broad scale distribution of terrestrial ecosystem complexes. Climate Change, 7:29–43.10.1007/BF00139439 Search in Google Scholar

Elith, J., Leathwick, J. R., 2009: Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40:677–697.10.1146/annurev.ecolsys.110308.120159 Search in Google Scholar

Feller, M. C., 1992: Generalized versus site-specific bio-mass regression equations for Pseudotsuga menziessi var. menziesii and Thuja plicata in Coastal British Columbia. Bioresource Technology, 39:9–16.10.1016/0960-8524(92)90050-8 Search in Google Scholar

Ferrier, S., Guisan, A., 2006: Spatial modelling of bio-diversity at the community level. Journal of Applied Ecology, 43:393–404.10.1111/j.1365-2664.2006.01149.x Search in Google Scholar

Fiedler, F., 1978: Abhängigkeit des Zuwachses in Fichtenbeständen von der Witterung unter Einfluß des Baumalters und der Standortsgruppe. Arch. Naturschutz u. Landschaftsforsch. Berlin, 18:227–230. Search in Google Scholar

Fitzpatrick, M. C., Sanders, N. J., Ferrier, S., Longino, J. T., Weiser, M. D., Dunn, R. R., 2011: Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 34:836–847.10.1111/j.1600-0587.2011.06653.x Search in Google Scholar

Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A. et al., 2019: Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 10:e551.10.1002/wcc.551 Search in Google Scholar

Fonti, M. V., 2020: Climatic signal in the parameters of annual rings (wood density, anatomical structure and isotopic composition) of coniferous and deciduous tree species in various natural and climatic zones of Eurasia: Diss. Doct. Biol. Sci.: 03.02.08. Krasnoyarsk, Siberian Federal University, 45 p. Available at:https://research.sfu-kras.ru/sites/research.sfu-kras.ru/files/Avtoreferat_Fonti.pdf. Search in Google Scholar

Forrester, D. I., Tachauer, I. H., Annighöefer, P., Barbeito, I. G., Pretzsch, H., Ruiz-Peinado, R. et al., 2017: Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396:160–175.10.1016/j.foreco.2017.04.011 Search in Google Scholar

Fu, L., Sun, W., Wang, G., 2017: A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees, 31:557–573.10.1007/s00468-016-1490-6 Search in Google Scholar

Ghosh, S., Wildi, O., 2007: Statistical analysis of landscape data: Space-for-time, probability surfaces and discovering species. In: Kienast, F. et al. (eds.): A Changing World: Challenges for Landscape Research. Landscape Series, 8. Dordrecht, Springer, p. 209–221.10.1007/978-1-4020-4436-6_14 Search in Google Scholar

Givnish, T. J., 2002: Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36:703–743.10.14214/sf.535 Search in Google Scholar

Glass, G. V., 1976: Primary, secondary and meta-analysis of research. Educational Researcher, 5:3–8.10.3102/0013189X005010003 Search in Google Scholar

Glebov, F. Z., Litvinenko, V. I., 1976: The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests. Lesovedenie, 4:56–62. Search in Google Scholar

Grundmann, B. M., 2009: Dendroklimatologische und dendroökologische Untersuchungen des Zuwachsverhaltens von Buche und Fichte in naturnahen Mischwäldern. Dissertation zur Erlangung des akademischen Grades. Technische Universität Dresden, Tharandt, 195 p. Search in Google Scholar

Guisan, A., Thuiller, W., 2005: Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8:993–1009.10.1111/j.1461-0248.2005.00792.x34517687 Search in Google Scholar

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., Kumar, R., 2020: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Scientific Reports, 10:12207.10.1038/s41598-020-68872-9741354932764540 Search in Google Scholar

Horrocks, C. A., Newsham, K. K., Cox, F., Garnett, M. H., Robinson, C. H., Dungait, J. A. J., 2020: Predicting climate change impacts on maritime Antarctic soils: a space-for-time substitution study. Soil Biology and Biochemistry, 141:107682.10.1016/j.soilbio.2019.107682 Search in Google Scholar

Huang, X., Tang, G., Zhu, T., Ding, H., Na, J., 2019: Space-for-time substitution in geomorphology: A critical review and conceptual framework. Journal of Geographical Sciences, 29:1670–1680.10.1007/s11442-019-1684-0 Search in Google Scholar

Huston, M. A., Wolverton, S., 2009: The global distribution of net primary production: resolving the paradox. Ecological Monographs, 79:343–377.10.1890/08-0588.1 Search in Google Scholar

Jensen, C. E., 1984: Development of Structured Regression Hypotheses/Interactive Descriptive Geometry Through Five Dimensions. U.S. Department of Agriculture; Intermountain Forest and Range Experiment Station Ogden. Research Paper INT- 324, 155 p. Available at:https://digitalcommons.usu.edu/govdocs_misc/1. Search in Google Scholar

Keeling, H. C., Phillips, O. L., 2007: The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16:618–631.10.1111/j.1466-8238.2007.00314.x Search in Google Scholar

Kobak, K. I., Kondrasheva, N.Yu., 1992: Changes in localization of natural zones under global warming. Russian Journal of Ecology, 3:9–18. Search in Google Scholar

Korzukhin, M. D., Semevsky, F. N., 1992: Synecology of the forest. St. Petersburg, Hydrometeoizdat. 192 p. Search in Google Scholar

Leštianska, A., Fleischer, P. jr., Merganičová, K., Fleischer, P., Střelcová, K., 2020a: Influence of warmer and drier environmental conditions on species-specific stem circumference dynamics and water status of conifers in submontane zone of Central Slovakia. Water, 12:2945.10.3390/w12102945 Search in Google Scholar

Leštianska A., Fleischer P. jr., Fleischer P., Merganičová K., Střelcová K. 2020b: Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydro-mechanics, 68:4. Search in Google Scholar

Leštianska, A., Merganičová, K., Merganič, J., Střelcová, K., 2015: Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008–2012. Journal of Forest Science, 61:315–324.10.17221/24/2015-JFS Search in Google Scholar

Liebig, J., 1840: Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag Vieweg. Deutsches Textarchiv. Available at: http://www.deutschestextarchiv.de/liebig_agricultur_1840.10.5962/bhl.title.42117 Search in Google Scholar

Liepa, I. Y., 1980: Dynamics of wood stock: Forecast and ecology. Riga, Zinatne, 170 p. Search in Google Scholar

Liepa, I. Y., 1985: A united method of taxation of stands response to anthropogenic influence. Lesovedenie, 6:12–18. Search in Google Scholar

Madgwick, H. A. I, 1983: Above-ground weight of forest plots – comparison of seven methods of estimation. New Zealand Journal of Forestry Science, 13:100–107. Search in Google Scholar

Maurin’s, A. M., Liepa, I. Ya., Drike, A. Ya, Pospelova, G. E., 1977: Prediction of fruiting of woody plants. In: Optimization of the use and reproduction of forests of the USSR. Moscow, Nauka, p. 50–53. Search in Google Scholar

McGuire, A. D., 2010: Recent impacts of climate change in Alaska and other boreal regions. In: Parrotta, J. A., Carr, M. A. (eds.): The International Forestry Review: Forests for the Future: Sustaining Society and the Environment. XXIII IUFRO World Congress, 23–28 August 2010, Seoul, Republic of Korea. Abstracts:20. Search in Google Scholar

McKenney, D. W., Pedlar, J. H., Rood, R. B., Price, D., 2011: Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 17:2720–2730.10.1111/j.1365-2486.2011.02413.x Search in Google Scholar

McLone, R. R., 1979: Mathematical modeling – the art of applying mathematics. In: Andrews, J. G., McLone, R. R. (eds.): Mathematical modeling. Moscow, Mir, p. 9–20. Search in Google Scholar

Miyanishi, K., Johnson, E. A., 2007: Coastal dune succession and the reality of dune processes. In: Johnson, E. A. et al. (eds.): Plant Disturbance Ecology: The Process and the Response. San Diego, CA, Academic Press, p. 249–282.10.1016/B978-012088778-1/50010-8 Search in Google Scholar

Molchanov, A. A., 1971: Productivity of organic mass in forests of different zones. Moscow, Nauka, 275 p. Search in Google Scholar

Mugasha, W. A., Eid, T., Bollandsås, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E. et al., 2012: Allometric models for prediction of aboveground bio-mass of single trees in miombo woodlands in Tanzania. In: Proceedings of the first Climate Change Impacts, Mitigation and Adaptation Programme Scientific Conference, p. 8–17. Search in Google Scholar

Müller, A., Weigelt, J., Götz, A., Schmidt, O., Alva, I. L., Matuschke, I., et al., 2015: The role of biomass in the sustainable development goals: A reality check and governance implications. IASS Working Paper. Potsdam, Institute for Advanced Sustainability Studies, 36 p. Search in Google Scholar

Muukkonen, P., Mäkipää, R., 2006: Biomass equations for European trees: Addendum. Silva Fennica, 40:763–773.10.14214/sf.475 Search in Google Scholar

Nebe, W., 1966: Über die Düngebedürftigkeit von Fichtenbeständen im Mittelgebirge. Archiv für Forstwesen, 15:929–952. Search in Google Scholar

Odum, E., 1975: Fundamentals of Ecology. Moscow, Mir, 740 p. Search in Google Scholar

Olenin, S. M., 1982: Dynamics of radial growth of stands of pine phytocenoses in the middle taiga subzone of the Pre-Urals: PhD thesis, Sverdlovsk, 18 p. Search in Google Scholar

Paterson, S.S., 1956: The forest area of the world and its potential productivity. Göteborg, the Royal University, 216 p. Search in Google Scholar

Pastor, J., Aber, J. D., Melillo, J. M., 1984: Biomass prediction using generalized allometric regressions for some Northeast tree species. Forest Ecology and Management, 7:265–274.10.1016/0378-1127(84)90003-3 Search in Google Scholar

Poryazov, Ya., Tonchev, T., Dobrichov, I., 2004: Forest mensuration textbook. Sofia, Bulvark, 420 p. Search in Google Scholar

Protasov, A. N., 1952: Plantations of Siberian larch in the zone of dark-chestnut soils of Kazakhstan. Lesnoe Khozyaistvo, 2:31–33. Search in Google Scholar

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., Baldocchi, D. D., 2014: Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences USA, 111:201216065.10.1073/pnas.1216065111418333425225392 Search in Google Scholar

Ricklefs, R. E., 1979: Fundamentals of Common Ecology. Moscow, Mir. 424 p. Search in Google Scholar

Ricklefs, R. E., 1987: Community diversity: Relative roles of local and regional processes. Science, 235:167–171.10.1126/science.235.4785.16717778629 Search in Google Scholar

Röhle, H., Gerold, D., Gemballa, R., 2010: Beziehungen zwischen Klima und Zuwachs, dargestellt am Beispiel von Fichte, Kiefer und Buche in Sachsen. Allgemeine Forst- und Jagdzeitung, 181:21–35. Search in Google Scholar

Rößiger, G., Kulla, L., Bošeľa, M., 2019: Changes in growth caused by climate change and other limiting factors in time affect the optimal equilibrium of close-to-nature forest management. Central European Forestry Journal, 65:180–190.10.2478/forj-2019-0023 Search in Google Scholar

Rosen, R., 1967: Optimality principles in biology. London, Butterworths, 198 p.10.1007/978-1-4899-6419-9 Search in Google Scholar

Rosenberg, G. S., Ryansky, F. N., Lazareva, N. V., Saksonov, S. V., Simonov, Yu. V., Khasaev, G. R., 2016: General and Applied Ecology. Samara-Togliatti, Publishing House of the Samara State Economic University, 452 p. Search in Google Scholar

Royer-Tardif, S., Boisvert-Marsh, L., Godbout, J., Isabel, N., Aubin, I., 2021: Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecology and Evolution, 11:13081–13100.10.1002/ece3.8024849582134646454 Search in Google Scholar

Rubtsov, V. I., Ilyin, A. M., 1956: To the question of the effect of precipitation and air temperature on the growth of Scots pine trees. Scientific Notes of the Voronezh Forestry Institute, 15:57–62. Search in Google Scholar

Rukhovich, D. I., Pankova, E. I., Kalinina, N. V., Chernousenko, G. I., 2019: Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index. Eurasian Soil Science, 52:271–282.10.1134/S1064229319010125 Search in Google Scholar

Saraiva, D. D., Esser, L. F., Grasel, D., Jarenkow, J. A., 2021: Distribution shifts, potential refugia, and the performance of protected areas under climate change in the Araucaria moist forests ecoregion. Applied Vegetation Science, 24:e12628.10.1111/avsc.12628 Search in Google Scholar

Schaphoff, S., Reyer, C. P., Schepaschenko, D., Gerten, D., Shvidenko, A., 2016: Tamm Review: observed and projected climate change impacts on Russia’s forests and its carbon balance. Forest Ecology and Management, 361:432–444.10.1016/j.foreco.2015.11.043 Search in Google Scholar

Schnabel, F., Purrucker, S., Schmitt L., Engelmann R. A., Kahl A., Richter R., et al., 2021: Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Global Change Biology, Preprint, p. 1–14.10.1101/2021.03.05.434090 Search in Google Scholar

Schulze, E.-D., Schulze, W., Kelliher, F. M., Vygodskaya, N. N., Ziegler, W., Kobak, K. I. et al., 1995: Aboveground biomass and nitrogen nutriation in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Canadian Journal of Forest Research, 25:943–960.10.1139/x95-103 Search in Google Scholar

Schulze, E.-D. (ed.), 2000: Carbon and nutrient cycling in European forest ecosystems. (Ecological Studies. Vol. 142). Berlin, Heidelberg, New York, Springer-Verlag, 506 p.10.1007/978-3-642-57219-7 Search in Google Scholar

Scarascia-Mugnozza, G., Bauer, G. A., Persson, H., Matteucci, G., Masci, A., 2000: Tree biomass, growth and nutrient pools. In: E.-D. Schulze (ed.): Carbon and nutrient cycling in European forest ecosystems. (Ecological Studies, 142). Berlin, Heidelberg, New York, Springer-Verlag, 49–62.10.1007/978-3-642-57219-7_3 Search in Google Scholar

Seidl, R., Albrich, K., Thom, D., Rammer, W., 2018: Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 209:46–56.10.1016/j.jenvman.2017.12.014 Search in Google Scholar

Shelford, V. E., 1913: Animal communities in temperate America as illustrated in the Chicago region: a study in animal ecology. Issue 5., Part 1. Pub. for the Geographic Society of Chicago by the University of Chicago Press, 362 p.10.5962/bhl.title.34437 Search in Google Scholar

Singh, T., 1986: Generalizing biomass equations for the boreal forest region of west-central Canada. Forest Ecology and Management, 17:97–107.10.1016/0378-1127(86)90102-7 Search in Google Scholar

Smolonogov, E. P., 1995: Forest formation process and genetic classification of forest types. Lesa Urala I Khozyaistvo v nikh, 18:43–58. Search in Google Scholar

Spathelf, P., Stanturf, J., Kleine, M., Jandl, R., Chiatante, D., Bolte, A., 2018: Adaptive measures: integrating adaptive forest management and forest landscape restoration. Annals of Forest Science, 75:55.10.1007/s13595-018-0736-4 Search in Google Scholar

Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jorgensen, P. M. et al., 2011: Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20:744–754.10.1111/j.1466-8238.2010.00645.x Search in Google Scholar

Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., Prentice, I. C., 2005: Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences USA, 102:8245–8250.10.1073/pnas.0409902102114048015919825 Search in Google Scholar

Timofeev, V. P., 1939: The death of spruce due to lack of moisture. Lesnoe Khozayistvo, 9:6–15. Search in Google Scholar

Tolsky, A. P., 1904: On the influence of temperature and precipitation on the growth of Scots pine in stem thickness. Forest Journal, 5:858–868. Search in Google Scholar

Toromani, E., Bojaxhi, F., 2010: Growth response of silver fir and Bosnian pine from Kosovo. South-East European Forestry, 1: 20–27.10.15177/seefor.10-03 Search in Google Scholar

Usoltsev, V. A., 1990: Mensuration of forest biomass: Modernization of standard base of forest inventory. In: XIX World Congress Proceedings, IUFRO, Division 4. Canada, Montreal:79-92. Available et: https://www.researchgate.net/publication/312094663_Usoltsev_V_A_Mensuration_of_forest_biomass_Modernization_of_standard_base_of_forest_inventory_XIX_World_Congress_Proceedings_IUFRO_Division_4-_Canada_Montreal_1990-_P_79-92 Search in Google Scholar

Usoltsev, V. A., 2001: Forest biomass of Northern Eurasia: database and geography. Scientific issue. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 708 p. Search in Google Scholar

Usoltsev, V. A., 2007a: Some methodological and conceptual uncertainties in estimating the income component of the forest carbon cycle. Russian Journal of Ecology, 38:1–10.10.1134/S1067413607010018 Search in Google Scholar

Usoltsev, V. A., 2007b: Biological productivity of Northern Eurasia’s forests: methods, datasets, applications. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 2007. 636 p. Available at: http://elar.usfeu.ru/handle/123456789/3281. Search in Google Scholar

Usoltsev, V. A., 2010: Eurasian forest biomass and primary production data. Yekaterinburg, Ural Branch of Russian Academy of Sciences. 574 p. Available at: http://elar.usfeu.ru/handle/123456789/2606. Search in Google Scholar

Usoltsev, V. A., 2018: In basements of the biosphere: What we know about the primary production of tree roots? Eko-Potencial, 24:24–77. Available at:https://elar.usfeu.ru/bitstream/123456789/8024/1/eko4-18-04.pdf. Search in Google Scholar

Usoltsev, V. A., 2020: Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg, Ural State Forest Engineering University; Botanical Garden, Ural Branch of Russian Academy of Sciences. Available at:https://elar.usfeu.ru/bit-stream/123456789/9647/2/Base1_v2_ob.pdf. Search in Google Scholar

Usoltsev, V. A., Kolchin, K. V., Malenko, A. A., 2017a: Sign change in generic allometric models in local estimation of larch biomass. Vestnik Altaiskogo Gosudarstvennogo Agrarnogo Universiteta, 150:85–90. Search in Google Scholar

Usoltsev, V. A., Kolchin, K. V., Chasovskikh, V. P., 2017b: Offset modelli allometriche generale ad una stima della biomassa locale di abeti in Eurasia (Biases of generic allometric models when local estimating spruce tree biomass in Eurasia). Italian Science Review, 48/49:27–31. Search in Google Scholar

Usoltsev, V. A., Kolchin, K. V., Noritsina, Yu. V., Azarenok, M. V., Bogoslovskaya, O. A., 2017c: Biases of generic species-specific allometric models when local estimating tree biomass of firs and 2- or 5-needled pines (Abies Mill., Pinus sylvestris L., Pinus sibirica Du Tour). Eko-Potencial, 18:47–58. Search in Google Scholar

Usoltsev, V. A., Merganičová, K., Konôpka, B., Osmirko, A. A., Tsepordey, I. S., Chasovskikh, V. P., 2019a: Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal, 65:166–179.10.2478/forj-2019-0017 Search in Google Scholar

Usoltsev, V. A., Zukow, W., Osmirko, A. A., Tsepordey, I. S., Chasovskikh, V. P., 2019b: Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia. Ecological Questions, 30:57–67.10.12775/EQ.2019.012 Search in Google Scholar

Usoltsev, V. A., Shobairi, S. O. R., Chasovskikh, V. P., 2019c: Comparing of allometric models of single-tree biomass intended for airborne laser sensing and terrestrial taxation of carbon pool in the forests of Eurasia. Natural Resource Modeling, 32:e12187.10.1111/nrm.12187 Search in Google Scholar

Usoltsev, V. A., Kovyazin, V. F., Tsepordey, I. S., 2020a: Increasing contribution of climate variables to the explanation of Quercus spp. single-tree biomass variability in Eurasia as related to model deviation from allometry. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 233:39–59.10.21266/2079-4304.2020.233.39-59 Search in Google Scholar

Usoltsev, V. A., Shobairi, S. O. R., Tsepordey, I. S., 2020b: Compatible models for Quercus spp. stand biomass and net primary production sensitive to precipitation and winter temperature in Eurasia. Macedonian Journal of Ecology and Environment, 22:59–70. Search in Google Scholar

Utkin, A. I., 2004: Two voluminous books about the phytomass of the forests of Northern Eurasia. Lesovedenie, 1:68–70. Search in Google Scholar

Vasseur, F., Exposito-Alonso, M., Ayala-Garay, O. J., Wang, G., Enquist, B. J., Vile, D. et al., 2018: Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 115:3416–3421.10.1073/pnas.1709141115587965129540570 Search in Google Scholar

Veloz, S., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., Liu, Z., 2012: No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models. Global Change Biology, 18:1698–1713.10.1111/j.1365-2486.2011.02635.x Search in Google Scholar

Wade, A. A., Hand, B. K., Kovach, R. P., Muhlfeld, C. C., Waples, R. S., Luikart, G., 2017: Assessments of species’ vulnerability to climate change: From pseudo to science. Biodiversity and Conservation, 26:223–229.10.1007/s10531-016-1232-5 Search in Google Scholar

West, G. B., Brown, J. H., Enguist, B. J., 1999: A general model for the structure and allometry of plant vascular system. Nature, 400:664–667.10.1038/23251 Search in Google Scholar

Wilmking, M., Juday, G. P., Barber, V. A., Zald, H. S., 2004: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 10:1724–1736.10.1111/j.1365-2486.2004.00826.x Search in Google Scholar

World Weather Maps: 2007. Available at: https://www.mapsofworld.com/referrals/weather Search in Google Scholar

Zeng, W. S., Duo, H. R., Lei, X. D., Chen, X. Y., Wang, X. J., Pu, Y. et al., 2017: Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 136:233–249.10.1007/s10342-017-1024-9 Search in Google Scholar

eISSN:
2454-0358
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other