Open Access

Change in photosynthetic pigments of Date palm offshoots under abiotic stress factors


Cite

Abbas, M.F., Jasim, A.M., Shareef, H.J., 2015. Role of sulphur in salinity tolerance of Date palm (Phoenix dactylifera L.) offshoots cvs. Berhi and Sayer. International Journal of Agricultural and Food Science, 5: 92–97.Search in Google Scholar

Al Omron, A.M., El-Maghraby, S.E., Nadeem, M.E.A., El-Eter, A.M., Al-Mohani, H., 2012. Long term effect of irrigation with the treated sewage effluent on some soil properties of Al-Hassa Governorate, Saudi Arabia. Journal of the Saudi Society of Agricultural Sciences, 11: 15–18. https://doi.org/10.1016/j.jssas.2011.04.00410.1016/j.jssas.2011.04.004Search in Google Scholar

Ayala, A., Muñoz, M.F., Argüelles, S., 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014: 1–31. https://doi.org/10.1155/2014/36043810.1155/2014/360438406672224999379Search in Google Scholar

Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L., Lopes, C. M., 2012. Grapevine under deficit irrigation: Hints from physiological and molecular data. Annals of Botany, 105: 661–676.10.1093/aob/mcq030285990820299345Search in Google Scholar

Fondom, N.Y., Castro-Nava, S., Huerta, A.J., 2009. Photoprotective mechanisms during leaf ontogeny: cuticular development and anthocyanin deposition in two morphs of Agave striata that differ in leaf coloration. Botany-Botanique, 87: 1186–1197.10.1139/B09-076Search in Google Scholar

Haider, M.S., Khan, I.A., Jaskani, M.J., Naqvi, S.A., Hameed, M., Azam, M., Pintaud, J.C., 2015. Assessment of morphological attributes of Date palm accessions of diverse agro-ecological origin. Pakistan Journal of Botany, 47: 1143–1151.Search in Google Scholar

Hniličková, H., Hnilička, F., Martinková, J., Kraus, K., 2017. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63: 362–367. https://doi.org/10.17221/398/2017-PSE10.17221/398/2017-PSESearch in Google Scholar

Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84 (1): 55–60.10.1034/j.1399-3054.1992.840109.xSearch in Google Scholar

Jasim, A.M., Abbas, M.F., Shareef, H.J., 2016. Calcium application mitigates salt stress in Date palm (Phoenix dactylifera L.) offshoots cultivars of Berhi and Sayer. Acta Agriculturae Slovenica, 107: 103–112. https://doi.org/10.14720/aas.2016.107.1.1110.14720/aas.2016.107.1.11Search in Google Scholar

Lamaoui, M., Jemo, M., Datla, R., Bekkaoui, F., 2018. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6: 1–14. https://doi.org/10.3389/fchem.2018.0002610.3389/fchem.2018.00026582753729520357Search in Google Scholar

Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591–592.10.1042/bst0110591Search in Google Scholar

Mathur, S., Agrawal, D., Jajoo, A., 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137: 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.01010.1016/j.jphotobiol.2014.01.01024796250Search in Google Scholar

Nievola, C.C., Carvalho, C.P., Carvalho, V., Rodrigues, E., 2017. Rapid responses of plants to temperature changes. Temperature, 4: 371–405. https://doi.org/10.1080/23328940.2017.137781210.1080/23328940.2017.1377812Search in Google Scholar

Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.D., 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 6: 177–189.10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2Search in Google Scholar

Pandey, P., Irulappan, V., Bagavathiannan, M.V., Senthil-Kumar, M., 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8: 1–15. https://doi.org/10.3389/fpls.2017.0053710.3389/fpls.2017.00537Search in Google Scholar

Pereira, A., 2016, Plant abiotic stress challenges from the changing environment. Frontiers in Plant Science, 7: 2013–2015. https://doi.org/10.3389/fpls.2016.0112310.3389/fpls.2016.01123Search in Google Scholar

Rastogi, S., Shah, S., Kumar, R., Vashisth, D., Akhtar, M. Q., Kumar, A., Shasany, A. K., 2019. Ocimum metabolomics in response to abiotic stresses: cold, flood, drought and salinity. PLoS ONE, 14: 1–26. https://doi.org/10.1371/journal.pone.021090310.1371/journal.pone.0210903Search in Google Scholar

Reynolds-Henne, C.E., Langenegger, A., Mani, J., Schenk, N., Zumsteg, A., Feller, U., 2010. Interactions between temperature, drought and stomatal opening in legumes. Environmental and Experimental Botany, 68: 37–43.10.1016/j.envexpbot.2009.11.002Search in Google Scholar

Schoots, M. H., Gordijn, S. J., Scherjon, S. A., Van Goor, H., Hillebrands, J. L., 2018. Oxidative stress in placental pathology. Placenta, 69: 153–161. https://doi.org/10.1016/j.placenta.2018.03.003.10.1016/j.placenta.2018.03.003Search in Google Scholar

Sergiev, I., Alexieva, V., Karanov, E., 1997. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Proceedings of the Bulgarian Academy of Sciences, 51: 121–124.Search in Google Scholar

Shah, S.H., Houborg, R., McCabe, M.F., 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7: 1–20. https://doi.org/10.3390/agronomy703006110.3390/agronomy7030061Search in Google Scholar

Shalaby, O.A.E., 2018. Alleviation of salinity stress in red cabbage plants by urea and sulfur applications and sulfur applications. Journal of Plant Nutrition, 41 (12): 1597–1603. https://doi.org/10.1080/01904167.2018.146238710.1080/01904167.2018.1462387Search in Google Scholar

Shanahan, J.F., Edwards, I.B., Quick, J.S., 1990. Membrane thermostability and heat tolerance of spring wheat. Crop Science, 30: 247–251.10.2135/cropsci1990.0011183X003000020001xSearch in Google Scholar

Shareef, H.J., 2019. Salicylic acid and potassium promote flowering through modulating the hormonal levels and protein pattern of Date palm Phoenix dactylifera L. Sayer offshoots. Acta Agriculturae Slovenica, 114: 231–238. https://doi.org/10.14720/aas.2019.114.2.810.14720/aas.2019.114.2.8Search in Google Scholar

Stewart, R.C., Bewley J.D., 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65: 245–248.10.1104/pp.65.2.24544030516661168Search in Google Scholar

Tang, Y., Wang, L., Ma, C., Liu, J., Liu, B., Li, H., 2011. The use of HPLC in determination of endogenous hormones in anthers of bitter melon. Journal of Life Sciences, 5: 139–142.Search in Google Scholar

Urban, L., Aarrouf, J., Bidel, L.P.R., 2017. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence, 8: 1–18. https://doi.org/10.3389/fpls.2017.0206810.3389/fpls.2017.02068573597729312367Search in Google Scholar

Watkins, J. M., Chapman, J. M., Muday, G. K., 2017. Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture. Plant Physiology, 175: 1807–1825. https://doi.org/10.1104/pp.17.0101010.1104/pp.17.01010571773029051198Search in Google Scholar

Xu, Z., Jiang, Y., Zhou, G., 2015. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 6: 1–17. https://doi.org/10.3389/fpls.2015.0070110.3389/fpls.2015.00701456469526442017Search in Google Scholar

Zandalinas, S.I., Rivero, R.M., Martínez, V., Gómez-Cadenas, A. Arbona, V., 2016. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 16: 1–16.10.1186/s12870-016-0791-7484882527121193Search in Google Scholar

eISSN:
1338-7014
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Plant Science, Zoology, Ecology