1. bookVolume 46 (2019): Issue 2 (December 2019)
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year
© 2020 Sciendo

Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand

Published Online: 21 Dec 2019
Page range: 73 - 82
Received: 13 Jul 2019
Accepted: 02 Oct 2019
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year
© 2020 Sciendo

Despite their extensive distribution globally, recent reports indicate leopards are declining, especially in Southeast Asia. To support conservation efforts we analyzed the behavioral interactions between leopards (Panthera pardus), their prey, and tigers to determine if leopards fine-tune their activity to maximize contact with four prey species (sambar; wild boar; barking deer; banteng) and avoid tigers and if prey alter their temporal activity in response to variation in their relative abundance ratio with leopards. A lower density of sambar in the northern part of our study area and a lower density of wild boar and a higher density of tigers in the southern part allowed us to examine fine-grained differences in the behavior of leopards and their prey. We used camera trap data to investigate spatial and temporal overlap. Differences in tiger relative abundance did not appear to impact the temporal activity of leopards. Leopards had similar cathemeral activity at all sites with highest activity at dawn and dusk. This behavior appears to be a compromise to provide access to diurnal wild boar and barking deer and nocturnal sambar and banteng. Sambar showed higher temporal avoidance of leopards in the north where its RAI was lowest; in contrast, wild boar had the highest temporal avoidance in the south where its density was lowest. This is the first study in Southeast Asia to quantify spatial and temporal interactions between the leopard, its primary ungulate prey, and the tiger. It provides new insights for conserving this declining subspecies.


Andheria, A.P., Karanth, K.U., Kumar, N.S., 2007. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. Journal of Zoology, 273 (2): 169–175. https://doi.org/10.1111/j.1469-7998.2007.00310.x10.1111/j.1469-7998.2007.00310.xOpen DOISearch in Google Scholar

Azlan, J.M., Sharma, D.S.K., 2006. The diversity and activity patterns of wild fields in a secondary forest. Oryx, 40 (1): 36–41. https://doi.org/10.1017/S003060530600014710.1017/S0030605306000147Open DOISearch in Google Scholar

Brown, J.S., Laundre, J.W., Gurung, M., 1999. The ecology of fear: optimal foraging, game theory, and trophic interactions. Journal of Mammalogy, 80 (2): 385–399. https://doi.org/10.2307/138328710.2307/1383287Open DOISearch in Google Scholar

Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J.R., Griffiths, M., Holden, J., Kawanishi, K., Kinnaird, M.F., Laidlaw, R., Lynam, A., Macdonald, D., Martyr, D., McDougal, C., Nath, L., O’Brien, T.G., Seidensticker, J., Smith, D.J.L., Sunquist, M.E., Tilson, R., Shahruddin, W.N.W., 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation, 4: 75–79.Search in Google Scholar

Charnov, E.L., 1976. Optimum foraging and the marginal value theorem. Theoretical Population Biology, 9: 129–136.Search in Google Scholar

Creel, S., Christianson, D., Liley, S., Winnie, J.A., 2007. Predation risk affects reproductive physiology and demography of elk. Science, 315 (5814): 960.Search in Google Scholar

Donadio, E., Buskirk, S.W., 2006. Diet, morphology, and interspecific killing in carnivora. The American Naturalist, 167 (4): 524–536. doi: 10.1086/50103310.1086/501033Open DOISearch in Google Scholar

Duangchantrasiri, S., Umponjan, M., Simcharoen, S., Pattanavibool, A., Chaiwattana, S., Maneerat, S., Kumar, N.S., Jathanna, D., Srivathsa, A., Karanth, K.U., 2016. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement. Conservation Biology, 30 (3): 639–648. https://doi.org/10.1111/cobi.1265510.1111/cobi.12655Open DOISearch in Google Scholar

Garrott, R.A., Bruggeman, J.E., Becker, M.S., Kalinowski, S.T., White, P.J., 2007. Evaluating prey switching in wolf–ungulate systems. Ecological Applications, 17 (6): 1588–1597. doi: 10.1890/06-1439.110.1890/06-1439.1Open DOISearch in Google Scholar

Harihar, A., Pandav, B., Goyal, S.P., 2011. Responses of leopard Panthera pardus to the recovery of a tiger Panthera tigris population. Journal of Applied Ecology, 48 (3): 806–814. https://doi.org/10.1111/j.1365-2664.2011.01981.x10.1111/j.1365-2664.2011.01981.xOpen DOISearch in Google Scholar

Holling, C.S., 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91 (7): 385–398. https://doi.org/10.4039/Ent91385-710.4039/Ent91385-7Open DOISearch in Google Scholar

Karanth, K. U., Srivathsa, A., Vasudev, D., Puri, M., Parameshwaran, R., Kumar, N.S., 2017. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the the Royal Society. Biological Sciences, 284 (1848): 20161860. https://doi.org/10.1098/rspb.2016.1860Search in Google Scholar

Karanth, K.U., Sunquist, M.E., 1995. Prey selection by tiger, leopard and dhole in tropical forests. The Journal of Animal Ecology, 64 (4): 439–450. doi: 10.2307/564710.2307/5647Open DOISearch in Google Scholar

Karanth, K.U., Sunquist, M.E., 2000. Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. The Zoological Society of London, 250: 255–265. https://doi.org/10.1111/j.1469-7998.2000.tb01076.x10.1111/j.1469-7998.2000.tb01076.xOpen DOISearch in Google Scholar

Kenney, J., Allendorf, F.W., McDougal, C., Smith, J.L., 2014. How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proceedings of the Royal Society B. Biological Sciences, 281 (1789): 20133337. https://doi.org/10.1098/rspb.2013.3337Search in Google Scholar

Kitchener, A.C., Breitenmoser-Würsten, Ch., Eizirik, E., Gentry, A., Werdelin, L., Wilting, A., Yamaguchi, N., Abramov, A.V., Christiansen, P., Driscoll, C., Duckworth, J.W., Johnson, W., Luo. S.-J., Meijaard, E., O’Donoghue, P., Sanderson, J., Seymour K., Bru-ford, M., Groves, C., Hoffmann, M., Nowell, K., Timmons, Z., Tobe, S., 2017. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue, 11: 80.Search in Google Scholar

Kronfeld-Schor, N., Dayan, T., 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34 (1): 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.13243510.1146/annurev.ecolsys.34.011802.132435Open DOISearch in Google Scholar

Lekagul, B., McNeely, J.A., 1977. Mammals of Thailand. Bangkok: Kurusapha Ladpao Press. 758 p.Search in Google Scholar

Linkie, M., Ridout, M.S., 2011. Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology, 284 (3): 224–229. https://doi.org/10.1111/j.1469-7998.2011.00801.x10.1111/j.1469-7998.2011.00801.xOpen DOISearch in Google Scholar

Lovari, S., Pokheral, C.P., Jnawali, S.R., Fusani, L., Ferretti, F., 2015. Coexistence of the tiger and the common leopard in a prey-rich are: the role of prey partitioning. Journal of Zoology, 295: 122–131.Search in Google Scholar

Lynam, J.A., Jenks, E.K., Tantipisanuh, N., Chutipong, W., Ngoprasert, D., Gale, A.G., Steinmetz, R., Sukmasuang, R., Bhumpakphan, N., Lon, I., Grassman, J., Kitamura, S., Reed, H.D., Baker, C.M., McShea, W., Songsasen, N., Leimgruber, P. 2013. Terrestrial activity patterns of wild cats from camera-trapping. The Raffles Bulletin of Zoology, 61 (1): 407–415.Search in Google Scholar

Maputla, N.W., Maruping, N.T., Chimimba, C.T., Ferreira, S.M., 2015. Spatio-temporal separation between lions and leopards in the Kruger National Park and the Timbavati Private Nature Reserve, South Africa. Global Ecology and Conservation, 3: 693–706. https://doi.org.10.1016/j.gecco.2015.03.00110.1016/j.gecco.2015.03.001Open DOISearch in Google Scholar

Miththapala, S., Seidensticker, J., O’Brien, S.J., 1996. Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conservation Biology, 10: 1115–1132.Search in Google Scholar

Mondal, K., Gupta, S., Qureshi, Q., Sankar, K., 2011. Prey selection and food habits of leopard (Panthera pardus fusca) in Sariska Tiger Reserve, Rajasthan, India. Mammalia, 75 (2): 201–205. https://doi.org/10.1515/mamm.2011.01110.1515/mamm.2011.011Open DOISearch in Google Scholar

O’Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6 (2): 131–139. https://doi.org/10.1017/s136794300300317210.1017/s1367943003003172Open DOISearch in Google Scholar

Odden, M., Wegge, P., Fredriksen, T., 2010. Do tigers displace leopards? If so, why? Ecological Research, 25 (4): 875–881. doi: 10.1007/s11284-010-0723-110.1007/s11284-010-0723-1Open DOISearch in Google Scholar

Palomares, F., Caro, T.M., 1999. Interspecific killing among mammalian carnivores. The American Naturalist, 153 (5): 492–508. doi: 10.1086/30318910.1086/303189Open DOISearch in Google Scholar

R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. https://www.r-project.org/Search in Google Scholar

Ramakrishnan, U., Coss, R.G., Pelkey, N.W., 1999. Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation, 89 (2): 113–120. https://doi.org/10.1016/s0006-3207(98)00159-110.1016/s0006-3207(98)00159-1Open DOISearch in Google Scholar

Ramesh, T., Kalle, R., Sankar, K., Qureshi, Q., Bennett, N., 2012. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. Journal of Zoology, 287 (4): 269–275. https://doi.org.10.1111/j.1469-7998.2012.00908.x10.1111/j.1469-7998.2012.00908.xOpen DOISearch in Google Scholar

Ridout, M.S.., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14 (3): 322–337. https://doi.org/10.1198/jabes.2009.0803810.1198/jabes.2009.08038Open DOISearch in Google Scholar

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D., Wirsing, A.J., 2014. Status and ecological effects of the world’s largest carnivores. Science, 343 (6167): 1241484. doi: 10.1126/science.1241484Search in Google Scholar

Rostro-García, S., Kamler, J.F., Ash, E., Clements, G.R., Gibson, L., Lynam, A.J., McEwing, R., Naing, H., Paglia, S., 2016. Endangered leopards: range collapse of the Indochinese leopard (Panthera pardus delacouri) in Southeast Asia. Biological Conservation, 201: 293–300. https://doi.org/10.1016/j.biocon.2016.07.00110.1016/j.biocon.2016.07.001Open DOISearch in Google Scholar

Schaller, G.B., 1967. The deer and the tiger. Chicago: The University of Chicago Press. 370 p.Search in Google Scholar

Selvan, K.M., Veeraswami, G.G., Lyngdoh, S., Habib, B., Hussain, S.A., 2013. Prey selection and food habits of three sympatric large carnivores in a tropical lowland forest of the Eastern Himalayan Biodiversity Hotspot. Mammalian Biology – Zeitschrift für Säugetierkunde, 78 (4): 296–303. https://doi.org/10.1016/j.mambio.2012.11.00910.1016/j.mambio.2012.11.009Open DOISearch in Google Scholar

Simcharoen, A., Savini, T., Gale, G.A., Simcharoen, S., Duangchantrasiri, S., Pakpien, S., Smith, J.L.D., 2014. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx, 48 (3): 370–377. https://doi.org/10.1017/s003060531200140810.1017/s0030605312001408Open DOISearch in Google Scholar

Simcharoen, A., Simcharoen, S., Duangchantrasiri, S., Bump, J., Smith, J.L.D., 2018. Tiger and leopard diets in western Thailand: Evidence for overlap and potential consequences. Food Webs, 15: e00085. https://doi.org/10.1016/j.fooweb.2018.e0008510.1016/j.fooweb.2018.e00085Open DOISearch in Google Scholar

Simcharoen, S., 2007. The relationship between environmental factors and leopards in Huai Kha Khaeng Wildlife Sanctuary Uthai Thani. Journal of Wildlife in Thailand, 14: 65–79.Search in Google Scholar

Simcharoen, S., Barlow, A.C.D., Simcharoen, A., Smith, J. L.D., 2008. Home range size and daytime habitat selection of leopards in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Biological Conservation, 141 (9): 2242–2250. https://doi.org/10.1016/j.biocon.2008.06.01510.1016/j.biocon.2008.06.015Open DOISearch in Google Scholar

Sollmann, R., Mohamed, A., Samejima, H., Wilting, A., 2013. Risky business or simple solution – relative abundance indices from camera-trapping. Biological Conservation, 159: 405–412. https://doi.org/10.1016/j.biocon.2012.12.02510.1016/j.biocon.2012.12.025Open DOISearch in Google Scholar

Stein, A.B., Athreya, V., Gerngross, P., Balme, G., Henschel, P., Karanth, U., Miquelle, D., Rostro, S., Kamler, J.F., Laguardia, A., 2016. Panthera pardus. The IUCN Red List of Threatened Species 2016: e.T15954A50659089. [cit. 2019-05-3]. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS. T15954A50659089.enSearch in Google Scholar

Steinmetz, R., Seuaturien, N., Chutipong, W., 2013. Tigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivores. Biological Conservation, 163: 68–78. https:/doi.org/10.1016/j.biocon.2012.12.01610.1016/j.biocon.2012.12.016Open DOISearch in Google Scholar

Trisurat, Y., 2004. GIS database and its applications for ecosystem management. The Western Forest Complex Ecosystem Management Project, Department of National Park, Wildlife, and Plant Conservation, Bangkok, Thailand. 228 p.Search in Google Scholar

Uphyrkina, O., Johnson, W.E., Quigley, H., Miquelle, D., Marker, L.L., Bushs, M., O’Brien, S. J., 2001. Phylogenetics, genome diversity and origin of moder leopard, Panthera pardus. Molecular Ecology, 10: 2617–2633.Search in Google Scholar

Van Schaik, C. P., Griffiths, M., 1996. Activity periods of Indonesian rain forest mammals. Biotropica, 28 (1): 105–112. doi: 10.2307/238877510.2307/2388775Open DOISearch in Google Scholar

Yang, H., Zhao, X., Han, B., Wang, T., Mou, P., Ge, J., Feng, L., 2018. Spatiotemporal patterns of Amur leopards in northeast China: influence of tigers, prey, and humans. Mammalian Biology, 92: 120–128. https://doi.org/10.1016/j.mambio.2018.03.00910.1016/j.mambio.2018.03.009Open DOISearch in Google Scholar

Yasuda, M., 2004. Monitoring diversity and abundance of mammals with camera traps: a case study on Mount Tsukuba, central Japan. Mammal Study, 29 (1): 37–46.Search in Google Scholar

Plan your remote conference with Sciendo