1. bookVolume 55 (2021): Issue 3 (July 2021)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
access type Open Access

Quercetin improves myocardial redox status in rats with type 2 diabetes

Published Online: 13 Sep 2021
Volume & Issue: Volume 55 (2021) - Issue 3 (July 2021)
Page range: 142 - 152
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

Objective. Emerging data indicate that oxidative stress is closely associated with the pathogenesis of cardiovascular disease in type 2 diabetes mellitus (T2DM). The present study aimed to assess the effect of the most abundant flavonoid in the human diet quercetin (Q) on the myocardial redox status in rats with T2DM.

Methods. T2DM was induced in male Wistar rats by a high caloric diet (for 14 weeks) and two streptozotocin (25 mg/kg b.w.) injections applied in four weeks of the diet, once a week for two weeks. The Q was administered intragastrically by gavage in a dose of 10 or 50 mg/kg of the body weight for 8 weeks starting from the 8th day after the last streptozotocin injection. The control rats received citrate buffer and seven days after the last STZ injection, basal glucose levels were measured in all animals.

Results. Administration of Q increased insulin sensitivity in diabetic rats with more pronounced effect at a dose of 50 mg/kg b.w. The Q also decreased free radical oxidation in the heart mitochondria of diabetic animals, thus limiting the formation of advanced oxidation protein products in a dose-dependent manner and normalized the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase) in cardiac mitochondria independently of the dose used. In addition, the Q in both doses prevented the development of oxidative stress in the T2DM rats cardiomyocytes by reducing NADPH oxidase and xanthine oxidase activities.

Conclusions. The findings demonstrate that Q in both doses 10 mg/kg and 50 mg/kg can protect from the development of oxidative stress in cardiomyocytes in the diabetic rats. The present data indicate that the use of Q may contribute to the amelioration of cardiovascular risk in patients with T2DM.


Amado LC, Saliaris AP, Raju SVY, Lehrke S, St John M, Xie J, Stewart G, Fitton T, Minhas KM, Brawn J, Hare JM. Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. J Mol Cell Cardiol 39, 531–536, 2005.10.1016/j.yjmcc.2005.04.008 Search in Google Scholar

Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions. Free Radic Biol Med 33, 1260–1267, 2002.10.1016/S0891-5849(02)01016-X Search in Google Scholar

Bai T, Wang F, Zheng Y, Liang Q, Wang Y, Kong J, Cai L. Myocardial redox status, mitophagy and cardioprotection: a potential way to amend diabetic heart? Clin Sci (Lond), 130, 1511–1521, 2016.10.1042/CS2016016827433024 Search in Google Scholar

Bernatoniene J, Kopustinskiene DM, Jakstas V, Majiene V, Baniene R, Kursvietiene L, Masteikova R, Savickas A, Toleikis A, Trumbeckaite S. The effect of Leonurus cardiaca herb extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart. Planta Med 80, 525–532, 2014.10.1055/s-0034-136842624841965 Search in Google Scholar

Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222, G13–G25, 2014.10.1530/JOE-14-018225056117 Search in Google Scholar

Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116, 531–549, 2015.10.1161/CIRCRESAHA.116.303584439238825634975 Search in Google Scholar

Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J Nat Prod 77, 1693–1699, 2014.10.1021/np500320g25060641 Search in Google Scholar

Cave A, Grieve D, Johar S, Zhang M, Shah AM. NADPH oxidase-derived reactive oxygen species in cardiac patho-physiology. Philos Trans R Soc Lond B Biol Sci 360, 2327–2334, 2005.10.1098/rstb.2005.1772156959916321803 Search in Google Scholar

Conti G, Caccamo D, Siligato R, Gembillo G, Satta E, Pazzano D, Carucci N, Carella A, Del Campo G, Salvo A, Santoro D. Association of higher advanced oxidation protein products (AOPPs) levels in patients with diabetic and hypertensive nephropathy. Medicina (Kaunas) 55, 675, 2019.10.3390/medicina55100675684392031591338 Search in Google Scholar

Daubney J, Bonner PL, Hargreaves AJ, Dickenson JM. Cardioprotective and cardiotoxic effects of quercetin and two of its in vivo metabolites on differentiated h9c2 cardiomyocytes. Basic Clin Pharmacol Toxicol 116, 96–109, 2015.10.1111/bcpt.1231925203460 Search in Google Scholar

Di Lisa F, Menabo R, Barbato R, Siliprandi N. Contrasting effects of propionate and propionyl-L-carnitine on energy-linked processes in ischemic hearts. Am J Physiol 267, 455–461, 1994.10.1152/ajpheart.1994.267.2.H4558067396 Search in Google Scholar

D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev 2020, 5732956, 2020.10.1155/2020/5732956724497732509147 Search in Google Scholar

Dudylina AL, Ivanova MV, Shumaev KB, Ruuge EK. Superoxide formation in cardiac mitochondria and effect of phenolic antioxidants. Cell Biochem Biophys 77, 99–107, 2019.10.1007/s12013-018-0857-230218405 Search in Google Scholar

Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem 24, 355–364, 2017.10.2174/092986732366616090915370727633685 Search in Google Scholar

Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 152, 11–20, 2018.10.1016/j.bcp.2018.03.01129548810 Search in Google Scholar

Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother 111, 947–957, 2019.10.1016/j.biopha.2018.12.12730841474 Search in Google Scholar

Gorbenko NI, Borikov OY, Ivanova OV, Taran KV, Litvinova TS, Kiprych TV, Shalamai AS. The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. Ukr Biochem J 91, 46–54, 2019.10.15407/ubj91.05.046 Search in Google Scholar

Gradinaru D, Borsa C, Ionescu C, Margina D. Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 92, 313–322, 2013.10.1016/j.jprot.2013.03.03423587667 Search in Google Scholar

Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142, 375–415, 2014.10.1016/j.pharmthera.2014.01.00324462787 Search in Google Scholar

Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60, 307–317, 2013.10.1016/j.freeradbiomed.2013.02.02123454064 Search in Google Scholar

International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: 2019. Available at: https://www.diabetesatlas.org. Search in Google Scholar

Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct 6, 409–414, 2015.10.1039/C4FO00818A Search in Google Scholar

Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16, 25234–25263, 2015.10.3390/ijms161025234 Search in Google Scholar

Kicinska A, Jarmuszkiewicz W. Flavonoids and mitochondria: activation of cytoprotective pathways? Molecules 25, 3060, 2020.10.3390/molecules25133060 Search in Google Scholar

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013, 162750, 2013.10.1155/2013/162750 Search in Google Scholar

Lagoa R, Graziani I, Lopez-Sanchez C, Garcia-Martinez V, Gutierrez-Merino C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta 1807, 1562–1572, 2011.10.1016/j.bbabio.2011.09.022 Search in Google Scholar

Lee MC, Velayutham M, Komatsu T, Hille R, Zweier JL. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry 53, 6615–6623, 2014.10.1021/bi500582r Search in Google Scholar

Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hyper-trophy to failure. Hypertension 40, 477–484, 200210.1161/01.HYP.0000032031.30374.32 Search in Google Scholar

Lin S, Yang J, Wu G, Liu M, Luan X, Lv Q, Zhao H, Hu J. Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci 17 (Suppl 1), S46, 2010.10.1186/1423-0127-17-S1-S46 Search in Google Scholar

Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Invest 5, 623–634, 2014.10.1111/jdi.12250 Search in Google Scholar

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275, 1951.10.1016/S0021-9258(19)52451-6 Search in Google Scholar

Lutz M, Fuentes E, Avila F, Alarcon M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 24, 366, 2019.10.3390/molecules24020366635932130669612 Search in Google Scholar

Miller GL. Protein determination for large number of samples. Anal Chem 31, 964, 1959.10.1021/ac60149a611 Search in Google Scholar

Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284, 13291–13295, 2009.10.1074/jbc.R900010200267942719182219 Search in Google Scholar

Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51, 1–13, 2019.10.1038/s12276-019-0355-7692335531857574 Search in Google Scholar

Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, Pizzolatti MG, Silva FR. Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition 27, 1161–1167, 2011.10.1016/j.nut.2011.01.00821684120 Search in Google Scholar

Raza H, John A. Glutathione metabolism and oxidative stress in neonatal rat tissues from streptozotocin-induced diabetic mothers. Diabetes Metab Res Rev 20, 72–78, 2004.10.1002/dmrr.42214737748 Search in Google Scholar

Redondo A, Estrella N, Lorenzo AG, Cruzado M, Castro C. Quercetin and catechin synergistically inhibit angiotensin II-induced redox-dependent signalling pathways in vascular smooth muscle cells from hypertensive rats. Free Radic Res 46, 619–627, 2012.10.3109/10715762.2012.66052722295890 Search in Google Scholar

Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 126, 1501–1525, 2020.10.1161/CIRCRESAHA.120.315913725197432437308 Search in Google Scholar

Ritchie RH, Quinn JM, Cao AH, Drummond GR, Kaye DM, Favaloro JM, Proietto J, Delbridge LMD. The antioxidant tempol inhibits cardiac hypertrophy in the insulin-resistant GLUT4-deficient mouse in vivo. J Mol Cell Cardiol 42, 1119–1128, 2007.10.1016/j.yjmcc.2007.03.90017490678 Search in Google Scholar

Sagor AT, Tabassum N, Potol A, Alam A. Xanthine oxidase inhibitor, allopurinol, prevented oxidative stress, fibrosis, and myocardial damage in isoproterenol induced aged rats. Oxid Med Cell Longev 2015, 478039, 2015.10.1155/2015/478039447555026137187 Search in Google Scholar

Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5, 11849–11872, 2020.10.1021/acsomega.0c01818725478332478277 Search in Google Scholar

Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118, 1808–1829, 2016.10.1161/CIRCRESAHA.116.306923488890127230643 Search in Google Scholar

Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother 109, 1085–1099, 2019.10.1016/j.biopha.2018.10.13030551359 Search in Google Scholar

Skovso S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5, 349–358, 2014.10.1111/jdi.12235421007725411593 Search in Google Scholar

Takahama U, Koga Y, Hirota S, Yamauchi R. Inhibition of xanthine oxidase activity by an oxathiolanone derivative of quercetin. Food Chem 126, 1808–1811, 2011.10.1016/j.foodchem.2010.12.00925213960 Search in Google Scholar

Taylor EL, Armstrong KR, Perrett D, Hattersley AT, Winyard PG. Optimization of an advanced oxidation protein products assay: its application to studies of oxidative stress in diabetes mellitus. Oxid Med Cell Longev 2015, 496271, 2015.10.1155/2015/496271446581626113954 Search in Google Scholar

Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, Binnie M, Navarrete-Vazquez G, Estrada-Soto S. A comparative study of flavonoid analogues on streptozotocine-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11beta–hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem 45, 2606–2616, 2010.10.1016/j.ejmech.2010.02.04920346546 Search in Google Scholar

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301, H2181–2190, 2011.10.1152/ajpheart.00554.201121949114 Search in Google Scholar

Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852, 232–242, 2015.10.1016/j.bbadis.2014.06.030427789624997452 Search in Google Scholar

Wang Z, Chen K, Han Y, Zhu H, Zhou X, Tan T, Zeng J, Zhang J, Liu Y, Li Y, Yao Y, Yi J, He D, Zhou J, Ma J, Zeng C. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J Cardiovasc Pharmacol 72, 259–269, 2018.10.1097/FJC.0000000000000608628369629979350 Search in Google Scholar

Wein S, Behm N, Petersen RK, Kristiansen K, Wolffram S. Quercetin enhances adiponectin secretion by a PPAR-gamma independent mechanism. Eur J Pharm Sci 1, 16–22, 2010.10.1016/j.ejps.2010.05.00420580672 Search in Google Scholar

Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 4, 777–785, 2013. Search in Google Scholar

Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, Zhang Z. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Molec Med Rep 13, 1593–1601, 2016.10.3892/mmr.2015.4724473283626717963 Search in Google Scholar

Zhang M, Kho AL, Anilkumar N, Chibber R, Pagano PJ, Shah AM, Cave AC. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 113, 1235–1243, 2006.10.1161/CIRCULATIONAHA.105.58139716505175 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo